????
Current Path : /opt/alt/libicu65/usr/share/doc/alt-libicu65-devel/samples/uciter8/ |
Current File : //opt/alt/libicu65/usr/share/doc/alt-libicu65-devel/samples/uciter8/uit_len8.c |
/* ******************************************************************************* * * © 2016 and later: Unicode, Inc. and others. * License & terms of use: http://www.unicode.org/copyright.html#License * ******************************************************************************* ******************************************************************************* * * Copyright (C) 2003-2006, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: uit_len8.c * encoding: UTF-8 * tab size: 8 (not used) * indentation:4 * * created on: 2003feb10 * created by: Markus W. Scherer * * This file contains the implementation of the "lenient UTF-8" UCharIterator * as used in the uciter8 sample code. * UTF-8-style macros are defined as well as the UCharIterator. * The macros are incomplete (do not assemble code points from pairs of * surrogates, see comment below) * but sufficient for the iterator. */ #include <string.h> #include "unicode/utypes.h" #include "unicode/uiter.h" /* lenient UTF-8/CESU-8 macros ---------------------------------------------- */ /* * This code leniently reads 8-bit Unicode strings, * which could contain a mix of UTF-8 and CESU-8. * More precisely: * - supplementary code points may be encoded with dedicated 4-byte sequences * (UTF-8 style) * - supplementary code points may be encoded with * pairs of 3-byte sequences, one for each surrogate of the UTF-16 form * (CESU-8 style) * - single surrogates are allowed, encoded with their "natural" 3-byte sequences * * Limitation: * Right now, the macros do not attempt to assemble code points from pairs of * separately encoded surrogates. * This would not be sufficient for processing based on these macros, * but it is sufficient for a UCharIterator that returns only UChars anyway. * * The code is copied and modified from utf_impl.c and utf8.h. * * Change 2006feb08: Much of the implementation code is replaced by calling * the utf_impl.c functions which accept a new "strict" parameter value * of -2 implementing exactly this leniency. */ #define L8_NEXT(s, i, length, c) { \ (c)=(uint8_t)(s)[(i)++]; \ if((c)>=0x80) { \ if(U8_IS_LEAD(c)) { \ (c)=utf8_nextCharSafeBody((const uint8_t *)s, &(i), (int32_t)(length), c, -2); \ } else { \ (c)=U_SENTINEL; \ } \ } \ } #define L8_PREV(s, start, i, c) { \ (c)=(uint8_t)(s)[--(i)]; \ if((c)>=0x80) { \ if((c)<=0xbf) { \ (c)=utf8_prevCharSafeBody((const uint8_t *)s, start, &(i), c, -2); \ } else { \ (c)=U_SENTINEL; \ } \ } \ } /* lenient-8 UCharIterator -------------------------------------------------- */ /* * This is a copy of the UTF-8 UCharIterator in uiter.cpp, * except that it uses the lenient-8-bit-Unicode macros above. */ /* * Minimal implementation: * Maintain a single-UChar buffer for an additional surrogate. * The caller must not modify start and limit because they are used internally. * * Use UCharIterator fields as follows: * context pointer to UTF-8 string * length UTF-16 length of the string; -1 until lazy evaluation * start current UTF-8 index * index current UTF-16 index; may be -1="unknown" after setState() * limit UTF-8 length of the string * reservedField supplementary code point * * Since UCharIterator delivers 16-bit code units, the iteration can be * currently in the middle of the byte sequence for a supplementary code point. * In this case, reservedField will contain that code point and start will * point to after the corresponding byte sequence. The UTF-16 index will be * one less than what it would otherwise be corresponding to the UTF-8 index. * Otherwise, reservedField will be 0. */ /* * Possible optimization for NUL-terminated UTF-8 and UTF-16 strings: * Add implementations that do not call strlen() for iteration but check for NUL. */ static int32_t U_CALLCONV lenient8IteratorGetIndex(UCharIterator *iter, UCharIteratorOrigin origin) { switch(origin) { case UITER_ZERO: case UITER_START: return 0; case UITER_CURRENT: if(iter->index<0) { /* the current UTF-16 index is unknown after setState(), count from the beginning */ const uint8_t *s; UChar32 c; int32_t i, limit, index; s=(const uint8_t *)iter->context; i=index=0; limit=iter->start; /* count up to the UTF-8 index */ while(i<limit) { L8_NEXT(s, i, limit, c); if(c<=0xffff) { ++index; } else { index+=2; } } iter->start=i; /* just in case setState() did not get us to a code point boundary */ if(i==iter->limit) { iter->length=index; /* in case it was <0 or wrong */ } if(iter->reservedField!=0) { --index; /* we are in the middle of a supplementary code point */ } iter->index=index; } return iter->index; case UITER_LIMIT: case UITER_LENGTH: if(iter->length<0) { const uint8_t *s; UChar32 c; int32_t i, limit, length; s=(const uint8_t *)iter->context; if(iter->index<0) { /* * the current UTF-16 index is unknown after setState(), * we must first count from the beginning to here */ i=length=0; limit=iter->start; /* count from the beginning to the current index */ while(i<limit) { L8_NEXT(s, i, limit, c); if(c<=0xffff) { ++length; } else { length+=2; } } /* assume i==limit==iter->start, set the UTF-16 index */ iter->start=i; /* just in case setState() did not get us to a code point boundary */ iter->index= iter->reservedField!=0 ? length-1 : length; } else { i=iter->start; length=iter->index; if(iter->reservedField!=0) { ++length; } } /* count from the current index to the end */ limit=iter->limit; while(i<limit) { L8_NEXT(s, i, limit, c); if(c<=0xffff) { ++length; } else { length+=2; } } iter->length=length; } return iter->length; default: /* not a valid origin */ /* Should never get here! */ return -1; } } static int32_t U_CALLCONV lenient8IteratorMove(UCharIterator *iter, int32_t delta, UCharIteratorOrigin origin) { const uint8_t *s; UChar32 c; int32_t pos; /* requested UTF-16 index */ int32_t i; /* UTF-8 index */ UBool havePos; /* calculate the requested UTF-16 index */ switch(origin) { case UITER_ZERO: case UITER_START: pos=delta; havePos=TRUE; /* iter->index<0 (unknown) is possible */ break; case UITER_CURRENT: if(iter->index>=0) { pos=iter->index+delta; havePos=TRUE; } else { /* the current UTF-16 index is unknown after setState(), use only delta */ pos=0; havePos=FALSE; } break; case UITER_LIMIT: case UITER_LENGTH: if(iter->length>=0) { pos=iter->length+delta; havePos=TRUE; } else { /* pin to the end, avoid counting the length */ iter->index=-1; iter->start=iter->limit; iter->reservedField=0; if(delta>=0) { return UITER_UNKNOWN_INDEX; } else { /* the current UTF-16 index is unknown, use only delta */ pos=0; havePos=FALSE; } } break; default: return -1; /* Error */ } if(havePos) { /* shortcuts: pinning to the edges of the string */ if(pos<=0) { iter->index=iter->start=iter->reservedField=0; return 0; } else if(iter->length>=0 && pos>=iter->length) { iter->index=iter->length; iter->start=iter->limit; iter->reservedField=0; return iter->index; } /* minimize the number of L8_NEXT/PREV operations */ if(iter->index<0 || pos<iter->index/2) { /* go forward from the start instead of backward from the current index */ iter->index=iter->start=iter->reservedField=0; } else if(iter->length>=0 && (iter->length-pos)<(pos-iter->index)) { /* * if we have the UTF-16 index and length and the new position is * closer to the end than the current index, * then go backward from the end instead of forward from the current index */ iter->index=iter->length; iter->start=iter->limit; iter->reservedField=0; } delta=pos-iter->index; if(delta==0) { return iter->index; /* nothing to do */ } } else { /* move relative to unknown UTF-16 index */ if(delta==0) { return UITER_UNKNOWN_INDEX; /* nothing to do */ } else if(-delta>=iter->start) { /* moving backwards by more UChars than there are UTF-8 bytes, pin to 0 */ iter->index=iter->start=iter->reservedField=0; return 0; } else if(delta>=(iter->limit-iter->start)) { /* moving forward by more UChars than the remaining UTF-8 bytes, pin to the end */ iter->index=iter->length; /* may or may not be <0 (unknown) */ iter->start=iter->limit; iter->reservedField=0; return iter->index>=0 ? iter->index : UITER_UNKNOWN_INDEX; } } /* delta!=0 */ /* move towards the requested position, pin to the edges of the string */ s=(const uint8_t *)iter->context; pos=iter->index; /* could be <0 (unknown) */ i=iter->start; if(delta>0) { /* go forward */ int32_t limit=iter->limit; if(iter->reservedField!=0) { iter->reservedField=0; ++pos; --delta; } while(delta>0 && i<limit) { L8_NEXT(s, i, limit, c); if(c<0xffff) { ++pos; --delta; } else if(delta>=2) { pos+=2; delta-=2; } else /* delta==1 */ { /* stop in the middle of a supplementary code point */ iter->reservedField=c; ++pos; break; /* delta=0; */ } } if(i==limit) { if(iter->length<0 && iter->index>=0) { iter->length= iter->reservedField==0 ? pos : pos+1; } else if(iter->index<0 && iter->length>=0) { iter->index= iter->reservedField==0 ? iter->length : iter->length-1; } } } else /* delta<0 */ { /* go backward */ if(iter->reservedField!=0) { iter->reservedField=0; i-=4; /* we stayed behind the supplementary code point; go before it now */ --pos; ++delta; } while(delta<0 && i>0) { L8_PREV(s, 0, i, c); if(c<0xffff) { --pos; ++delta; } else if(delta<=-2) { pos-=2; delta+=2; } else /* delta==-1 */ { /* stop in the middle of a supplementary code point */ i+=4; /* back to behind this supplementary code point for consistent state */ iter->reservedField=c; --pos; break; /* delta=0; */ } } } iter->start=i; if(iter->index>=0) { return iter->index=pos; } else { /* we started with index<0 (unknown) so pos is bogus */ if(i<=1) { return iter->index=i; /* reached the beginning */ } else { /* we still don't know the UTF-16 index */ return UITER_UNKNOWN_INDEX; } } } static UBool U_CALLCONV lenient8IteratorHasNext(UCharIterator *iter) { return iter->reservedField!=0 || iter->start<iter->limit; } static UBool U_CALLCONV lenient8IteratorHasPrevious(UCharIterator *iter) { return iter->start>0; } static UChar32 U_CALLCONV lenient8IteratorCurrent(UCharIterator *iter) { if(iter->reservedField!=0) { return U16_TRAIL(iter->reservedField); } else if(iter->start<iter->limit) { const uint8_t *s=(const uint8_t *)iter->context; UChar32 c; int32_t i=iter->start; L8_NEXT(s, i, iter->limit, c); if(c<0) { return 0xfffd; } else if(c<=0xffff) { return c; } else { return U16_LEAD(c); } } else { return U_SENTINEL; } } static UChar32 U_CALLCONV lenient8IteratorNext(UCharIterator *iter) { int32_t index; if(iter->reservedField!=0) { UChar trail=U16_TRAIL(iter->reservedField); iter->reservedField=0; if((index=iter->index)>=0) { iter->index=index+1; } return trail; } else if(iter->start<iter->limit) { const uint8_t *s=(const uint8_t *)iter->context; UChar32 c; L8_NEXT(s, iter->start, iter->limit, c); if((index=iter->index)>=0) { iter->index=++index; if(iter->length<0 && iter->start==iter->limit) { iter->length= c<=0xffff ? index : index+1; } } else if(iter->start==iter->limit && iter->length>=0) { iter->index= c<=0xffff ? iter->length : iter->length-1; } if(c<0) { return 0xfffd; } else if(c<=0xffff) { return c; } else { iter->reservedField=c; return U16_LEAD(c); } } else { return U_SENTINEL; } } static UChar32 U_CALLCONV lenient8IteratorPrevious(UCharIterator *iter) { int32_t index; if(iter->reservedField!=0) { UChar lead=U16_LEAD(iter->reservedField); iter->reservedField=0; iter->start-=4; /* we stayed behind the supplementary code point; go before it now */ if((index=iter->index)>0) { iter->index=index-1; } return lead; } else if(iter->start>0) { const uint8_t *s=(const uint8_t *)iter->context; UChar32 c; L8_PREV(s, 0, iter->start, c); if((index=iter->index)>0) { iter->index=index-1; } else if(iter->start<=1) { iter->index= c<=0xffff ? iter->start : iter->start+1; } if(c<0) { return 0xfffd; } else if(c<=0xffff) { return c; } else { iter->start+=4; /* back to behind this supplementary code point for consistent state */ iter->reservedField=c; return U16_TRAIL(c); } } else { return U_SENTINEL; } } static uint32_t U_CALLCONV lenient8IteratorGetState(const UCharIterator *iter) { uint32_t state=(uint32_t)(iter->start<<1); if(iter->reservedField!=0) { state|=1; } return state; } static void U_CALLCONV lenient8IteratorSetState(UCharIterator *iter, uint32_t state, UErrorCode *pErrorCode) { if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { /* do nothing */ } else if(iter==NULL) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; } else if(state==lenient8IteratorGetState(iter)) { /* setting to the current state: no-op */ } else { int32_t index=(int32_t)(state>>1); /* UTF-8 index */ state&=1; /* 1 if in surrogate pair, must be index>=4 */ if((state==0 ? index<0 : index<4) || iter->limit<index) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; } else { iter->start=index; /* restore UTF-8 byte index */ if(index<=1) { iter->index=index; } else { iter->index=-1; /* unknown UTF-16 index */ } if(state==0) { iter->reservedField=0; } else { /* verified index>=4 above */ UChar32 c; L8_PREV((const uint8_t *)iter->context, 0, index, c); if(c<=0xffff) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; } else { iter->reservedField=c; } } } } } static const UCharIterator lenient8Iterator={ 0, 0, 0, 0, 0, 0, lenient8IteratorGetIndex, lenient8IteratorMove, lenient8IteratorHasNext, lenient8IteratorHasPrevious, lenient8IteratorCurrent, lenient8IteratorNext, lenient8IteratorPrevious, NULL, lenient8IteratorGetState, lenient8IteratorSetState }; U_CAPI void U_EXPORT2 uiter_setLenient8(UCharIterator *iter, const char *s, int32_t length) { if(iter!=0) { if(s!=0 && length>=-1) { *iter=lenient8Iterator; iter->context=s; if(length>=0) { iter->limit=length; } else { iter->limit=(int32_t)strlen(s); } iter->length= iter->limit<=1 ? iter->limit : -1; } else { /* set no-op iterator */ uiter_setString(iter, NULL, 0); } } }