????
Current Path : /opt/cpanel/ea-nodejs22/include/node/ |
Current File : //opt/cpanel/ea-nodejs22/include/node/v8-internal.h |
// Copyright 2018 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef INCLUDE_V8_INTERNAL_H_ #define INCLUDE_V8_INTERNAL_H_ #include <stddef.h> #include <stdint.h> #include <string.h> #include <atomic> #include <iterator> #include <memory> #include <type_traits> #include "v8config.h" // NOLINT(build/include_directory) namespace v8 { class Array; class Context; class Data; class Isolate; namespace internal { class Heap; class Isolate; typedef uintptr_t Address; static constexpr Address kNullAddress = 0; constexpr int KB = 1024; constexpr int MB = KB * 1024; constexpr int GB = MB * 1024; #ifdef V8_TARGET_ARCH_X64 constexpr size_t TB = size_t{GB} * 1024; #endif /** * Configuration of tagging scheme. */ const int kApiSystemPointerSize = sizeof(void*); const int kApiDoubleSize = sizeof(double); const int kApiInt32Size = sizeof(int32_t); const int kApiInt64Size = sizeof(int64_t); const int kApiSizetSize = sizeof(size_t); // Tag information for HeapObject. const int kHeapObjectTag = 1; const int kWeakHeapObjectTag = 3; const int kHeapObjectTagSize = 2; const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1; const intptr_t kHeapObjectReferenceTagMask = 1 << (kHeapObjectTagSize - 1); // Tag information for fowarding pointers stored in object headers. // 0b00 at the lowest 2 bits in the header indicates that the map word is a // forwarding pointer. const int kForwardingTag = 0; const int kForwardingTagSize = 2; const intptr_t kForwardingTagMask = (1 << kForwardingTagSize) - 1; // Tag information for Smi. const int kSmiTag = 0; const int kSmiTagSize = 1; const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1; template <size_t tagged_ptr_size> struct SmiTagging; constexpr intptr_t kIntptrAllBitsSet = intptr_t{-1}; constexpr uintptr_t kUintptrAllBitsSet = static_cast<uintptr_t>(kIntptrAllBitsSet); // Smi constants for systems where tagged pointer is a 32-bit value. template <> struct SmiTagging<4> { enum { kSmiShiftSize = 0, kSmiValueSize = 31 }; static constexpr intptr_t kSmiMinValue = static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1)); static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1); V8_INLINE static constexpr int SmiToInt(Address value) { int shift_bits = kSmiTagSize + kSmiShiftSize; // Truncate and shift down (requires >> to be sign extending). return static_cast<int32_t>(static_cast<uint32_t>(value)) >> shift_bits; } V8_INLINE static constexpr bool IsValidSmi(intptr_t value) { // Is value in range [kSmiMinValue, kSmiMaxValue]. // Use unsigned operations in order to avoid undefined behaviour in case of // signed integer overflow. return (static_cast<uintptr_t>(value) - static_cast<uintptr_t>(kSmiMinValue)) <= (static_cast<uintptr_t>(kSmiMaxValue) - static_cast<uintptr_t>(kSmiMinValue)); } }; // Smi constants for systems where tagged pointer is a 64-bit value. template <> struct SmiTagging<8> { enum { kSmiShiftSize = 31, kSmiValueSize = 32 }; static constexpr intptr_t kSmiMinValue = static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1)); static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1); V8_INLINE static constexpr int SmiToInt(Address value) { int shift_bits = kSmiTagSize + kSmiShiftSize; // Shift down and throw away top 32 bits. return static_cast<int>(static_cast<intptr_t>(value) >> shift_bits); } V8_INLINE static constexpr bool IsValidSmi(intptr_t value) { // To be representable as a long smi, the value must be a 32-bit integer. return (value == static_cast<int32_t>(value)); } }; #ifdef V8_COMPRESS_POINTERS // See v8:7703 or src/common/ptr-compr-inl.h for details about pointer // compression. constexpr size_t kPtrComprCageReservationSize = size_t{1} << 32; constexpr size_t kPtrComprCageBaseAlignment = size_t{1} << 32; static_assert( kApiSystemPointerSize == kApiInt64Size, "Pointer compression can be enabled only for 64-bit architectures"); const int kApiTaggedSize = kApiInt32Size; #else const int kApiTaggedSize = kApiSystemPointerSize; #endif constexpr bool PointerCompressionIsEnabled() { return kApiTaggedSize != kApiSystemPointerSize; } #ifdef V8_31BIT_SMIS_ON_64BIT_ARCH using PlatformSmiTagging = SmiTagging<kApiInt32Size>; #else using PlatformSmiTagging = SmiTagging<kApiTaggedSize>; #endif // TODO(ishell): Consinder adding kSmiShiftBits = kSmiShiftSize + kSmiTagSize // since it's used much more often than the inividual constants. const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize; const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize; const int kSmiMinValue = static_cast<int>(PlatformSmiTagging::kSmiMinValue); const int kSmiMaxValue = static_cast<int>(PlatformSmiTagging::kSmiMaxValue); constexpr bool SmiValuesAre31Bits() { return kSmiValueSize == 31; } constexpr bool SmiValuesAre32Bits() { return kSmiValueSize == 32; } constexpr bool Is64() { return kApiSystemPointerSize == sizeof(int64_t); } V8_INLINE static constexpr Address IntToSmi(int value) { return (static_cast<Address>(value) << (kSmiTagSize + kSmiShiftSize)) | kSmiTag; } /* * Sandbox related types, constants, and functions. */ constexpr bool SandboxIsEnabled() { #ifdef V8_ENABLE_SANDBOX return true; #else return false; #endif } // SandboxedPointers are guaranteed to point into the sandbox. This is achieved // for example by storing them as offset rather than as raw pointers. using SandboxedPointer_t = Address; #ifdef V8_ENABLE_SANDBOX // Size of the sandbox, excluding the guard regions surrounding it. #if defined(V8_TARGET_OS_ANDROID) // On Android, most 64-bit devices seem to be configured with only 39 bits of // virtual address space for userspace. As such, limit the sandbox to 128GB (a // quarter of the total available address space). constexpr size_t kSandboxSizeLog2 = 37; // 128 GB #elif defined(V8_TARGET_ARCH_LOONG64) // Some Linux distros on LoongArch64 configured with only 40 bits of virtual // address space for userspace. Limit the sandbox to 256GB here. constexpr size_t kSandboxSizeLog2 = 38; // 256 GB #else // Everywhere else use a 1TB sandbox. constexpr size_t kSandboxSizeLog2 = 40; // 1 TB #endif // V8_TARGET_OS_ANDROID constexpr size_t kSandboxSize = 1ULL << kSandboxSizeLog2; // Required alignment of the sandbox. For simplicity, we require the // size of the guard regions to be a multiple of this, so that this specifies // the alignment of the sandbox including and excluding surrounding guard // regions. The alignment requirement is due to the pointer compression cage // being located at the start of the sandbox. constexpr size_t kSandboxAlignment = kPtrComprCageBaseAlignment; // Sandboxed pointers are stored inside the heap as offset from the sandbox // base shifted to the left. This way, it is guaranteed that the offset is // smaller than the sandbox size after shifting it to the right again. This // constant specifies the shift amount. constexpr uint64_t kSandboxedPointerShift = 64 - kSandboxSizeLog2; // Size of the guard regions surrounding the sandbox. This assumes a worst-case // scenario of a 32-bit unsigned index used to access an array of 64-bit // values. constexpr size_t kSandboxGuardRegionSize = 32ULL * GB; static_assert((kSandboxGuardRegionSize % kSandboxAlignment) == 0, "The size of the guard regions around the sandbox must be a " "multiple of its required alignment."); // On OSes where reserving virtual memory is too expensive to reserve the // entire address space backing the sandbox, notably Windows pre 8.1, we create // a partially reserved sandbox that doesn't actually reserve most of the // memory, and so doesn't have the desired security properties as unrelated // memory allocations could end up inside of it, but which still ensures that // objects that should be located inside the sandbox are allocated within // kSandboxSize bytes from the start of the sandbox. The minimum size of the // region that is actually reserved for such a sandbox is specified by this // constant and should be big enough to contain the pointer compression cage as // well as the ArrayBuffer partition. constexpr size_t kSandboxMinimumReservationSize = 8ULL * GB; static_assert(kSandboxMinimumReservationSize > kPtrComprCageReservationSize, "The minimum reservation size for a sandbox must be larger than " "the pointer compression cage contained within it."); // The maximum buffer size allowed inside the sandbox. This is mostly dependent // on the size of the guard regions around the sandbox: an attacker must not be // able to construct a buffer that appears larger than the guard regions and // thereby "reach out of" the sandbox. constexpr size_t kMaxSafeBufferSizeForSandbox = 32ULL * GB - 1; static_assert(kMaxSafeBufferSizeForSandbox <= kSandboxGuardRegionSize, "The maximum allowed buffer size must not be larger than the " "sandbox's guard regions"); constexpr size_t kBoundedSizeShift = 29; static_assert(1ULL << (64 - kBoundedSizeShift) == kMaxSafeBufferSizeForSandbox + 1, "The maximum size of a BoundedSize must be synchronized with the " "kMaxSafeBufferSizeForSandbox"); #endif // V8_ENABLE_SANDBOX #ifdef V8_COMPRESS_POINTERS #ifdef V8_TARGET_OS_ANDROID // The size of the virtual memory reservation for an external pointer table. // This determines the maximum number of entries in a table. Using a maximum // size allows omitting bounds checks on table accesses if the indices are // guaranteed (e.g. through shifting) to be below the maximum index. This // value must be a power of two. constexpr size_t kExternalPointerTableReservationSize = 512 * MB; // The external pointer table indices stored in HeapObjects as external // pointers are shifted to the left by this amount to guarantee that they are // smaller than the maximum table size. constexpr uint32_t kExternalPointerIndexShift = 6; #else constexpr size_t kExternalPointerTableReservationSize = 1024 * MB; constexpr uint32_t kExternalPointerIndexShift = 5; #endif // V8_TARGET_OS_ANDROID // The maximum number of entries in an external pointer table. constexpr int kExternalPointerTableEntrySize = 8; constexpr int kExternalPointerTableEntrySizeLog2 = 3; constexpr size_t kMaxExternalPointers = kExternalPointerTableReservationSize / kExternalPointerTableEntrySize; static_assert((1 << (32 - kExternalPointerIndexShift)) == kMaxExternalPointers, "kExternalPointerTableReservationSize and " "kExternalPointerIndexShift don't match"); #else // !V8_COMPRESS_POINTERS // Needed for the V8.SandboxedExternalPointersCount histogram. constexpr size_t kMaxExternalPointers = 0; #endif // V8_COMPRESS_POINTERS // A ExternalPointerHandle represents a (opaque) reference to an external // pointer that can be stored inside the sandbox. A ExternalPointerHandle has // meaning only in combination with an (active) Isolate as it references an // external pointer stored in the currently active Isolate's // ExternalPointerTable. Internally, an ExternalPointerHandles is simply an // index into an ExternalPointerTable that is shifted to the left to guarantee // that it is smaller than the size of the table. using ExternalPointerHandle = uint32_t; // ExternalPointers point to objects located outside the sandbox. When the V8 // sandbox is enabled, these are stored on heap as ExternalPointerHandles, // otherwise they are simply raw pointers. #ifdef V8_ENABLE_SANDBOX using ExternalPointer_t = ExternalPointerHandle; #else using ExternalPointer_t = Address; #endif constexpr ExternalPointer_t kNullExternalPointer = 0; constexpr ExternalPointerHandle kNullExternalPointerHandle = 0; // // External Pointers. // // When the sandbox is enabled, external pointers are stored in an external // pointer table and are referenced from HeapObjects through an index (a // "handle"). When stored in the table, the pointers are tagged with per-type // tags to prevent type confusion attacks between different external objects. // Besides type information bits, these tags also contain the GC marking bit // which indicates whether the pointer table entry is currently alive. When a // pointer is written into the table, the tag is ORed into the top bits. When // that pointer is later loaded from the table, it is ANDed with the inverse of // the expected tag. If the expected and actual type differ, this will leave // some of the top bits of the pointer set, rendering the pointer inaccessible. // The AND operation also removes the GC marking bit from the pointer. // // The tags are constructed such that UNTAG(TAG(0, T1), T2) != 0 for any two // (distinct) tags T1 and T2. In practice, this is achieved by generating tags // that all have the same number of zeroes and ones but different bit patterns. // With N type tag bits, this allows for (N choose N/2) possible type tags. // Besides the type tag bits, the tags also have the GC marking bit set so that // the marking bit is automatically set when a pointer is written into the // external pointer table (in which case it is clearly alive) and is cleared // when the pointer is loaded. The exception to this is the free entry tag, // which doesn't have the mark bit set, as the entry is not alive. This // construction allows performing the type check and removing GC marking bits // from the pointer in one efficient operation (bitwise AND). The number of // available bits is limited in the following way: on x64, bits [47, 64) are // generally available for tagging (userspace has 47 address bits available). // On Arm64, userspace typically has a 40 or 48 bit address space. However, due // to top-byte ignore (TBI) and memory tagging (MTE), the top byte is unusable // for type checks as type-check failures would go unnoticed or collide with // MTE bits. Some bits of the top byte can, however, still be used for the GC // marking bit. The bits available for the type tags are therefore limited to // [48, 56), i.e. (8 choose 4) = 70 different types. // The following options exist to increase the number of possible types: // - Using multiple ExternalPointerTables since tags can safely be reused // across different tables // - Using "extended" type checks, where additional type information is stored // either in an adjacent pointer table entry or at the pointed-to location // - Using a different tagging scheme, for example based on XOR which would // allow for 2**8 different tags but require a separate operation to remove // the marking bit // // The external pointer sandboxing mechanism ensures that every access to an // external pointer field will result in a valid pointer of the expected type // even in the presence of an attacker able to corrupt memory inside the // sandbox. However, if any data related to the external object is stored // inside the sandbox it may still be corrupted and so must be validated before // use or moved into the external object. Further, an attacker will always be // able to substitute different external pointers of the same type for each // other. Therefore, code using external pointers must be written in a // "substitution-safe" way, i.e. it must always be possible to substitute // external pointers of the same type without causing memory corruption outside // of the sandbox. Generally this is achieved by referencing any group of // related external objects through a single external pointer. // // Currently we use bit 62 for the marking bit which should always be unused as // it's part of the non-canonical address range. When Arm's top-byte ignore // (TBI) is enabled, this bit will be part of the ignored byte, and we assume // that the Embedder is not using this byte (really only this one bit) for any // other purpose. This bit also does not collide with the memory tagging // extension (MTE) which would use bits [56, 60). // // External pointer tables are also available even when the sandbox is off but // pointer compression is on. In that case, the mechanism can be used to easy // alignment requirements as it turns unaligned 64-bit raw pointers into // aligned 32-bit indices. To "opt-in" to the external pointer table mechanism // for this purpose, instead of using the ExternalPointer accessors one needs to // use ExternalPointerHandles directly and use them to access the pointers in an // ExternalPointerTable. constexpr uint64_t kExternalPointerMarkBit = 1ULL << 62; constexpr uint64_t kExternalPointerTagMask = 0x40ff000000000000; constexpr uint64_t kExternalPointerTagMaskWithoutMarkBit = 0xff000000000000; constexpr uint64_t kExternalPointerTagShift = 48; // All possible 8-bit type tags. // These are sorted so that tags can be grouped together and it can efficiently // be checked if a tag belongs to a given group. See for example the // IsSharedExternalPointerType routine. constexpr uint64_t kAllExternalPointerTypeTags[] = { 0b00001111, 0b00010111, 0b00011011, 0b00011101, 0b00011110, 0b00100111, 0b00101011, 0b00101101, 0b00101110, 0b00110011, 0b00110101, 0b00110110, 0b00111001, 0b00111010, 0b00111100, 0b01000111, 0b01001011, 0b01001101, 0b01001110, 0b01010011, 0b01010101, 0b01010110, 0b01011001, 0b01011010, 0b01011100, 0b01100011, 0b01100101, 0b01100110, 0b01101001, 0b01101010, 0b01101100, 0b01110001, 0b01110010, 0b01110100, 0b01111000, 0b10000111, 0b10001011, 0b10001101, 0b10001110, 0b10010011, 0b10010101, 0b10010110, 0b10011001, 0b10011010, 0b10011100, 0b10100011, 0b10100101, 0b10100110, 0b10101001, 0b10101010, 0b10101100, 0b10110001, 0b10110010, 0b10110100, 0b10111000, 0b11000011, 0b11000101, 0b11000110, 0b11001001, 0b11001010, 0b11001100, 0b11010001, 0b11010010, 0b11010100, 0b11011000, 0b11100001, 0b11100010, 0b11100100, 0b11101000, 0b11110000}; #define TAG(i) \ ((kAllExternalPointerTypeTags[i] << kExternalPointerTagShift) | \ kExternalPointerMarkBit) // clang-format off // When adding new tags, please ensure that the code using these tags is // "substitution-safe", i.e. still operate safely if external pointers of the // same type are swapped by an attacker. See comment above for more details. // Shared external pointers are owned by the shared Isolate and stored in the // shared external pointer table associated with that Isolate, where they can // be accessed from multiple threads at the same time. The objects referenced // in this way must therefore always be thread-safe. #define SHARED_EXTERNAL_POINTER_TAGS(V) \ V(kFirstSharedTag, TAG(0)) \ V(kWaiterQueueNodeTag, TAG(0)) \ V(kExternalStringResourceTag, TAG(1)) \ V(kExternalStringResourceDataTag, TAG(2)) \ V(kLastSharedTag, TAG(2)) // External pointers using these tags are kept in a per-Isolate external // pointer table and can only be accessed when this Isolate is active. #define PER_ISOLATE_EXTERNAL_POINTER_TAGS(V) \ V(kForeignForeignAddressTag, TAG(10)) \ V(kNativeContextMicrotaskQueueTag, TAG(11)) \ V(kEmbedderDataSlotPayloadTag, TAG(12)) \ /* This tag essentially stands for a `void*` pointer in the V8 API, and */ \ /* it is the Embedder's responsibility to ensure type safety (against */ \ /* substitution) and lifetime validity of these objects. */ \ V(kExternalObjectValueTag, TAG(13)) \ V(kFunctionTemplateInfoCallbackTag, TAG(14)) \ V(kAccessorInfoGetterTag, TAG(15)) \ V(kAccessorInfoSetterTag, TAG(16)) \ V(kWasmInternalFunctionCallTargetTag, TAG(17)) \ V(kWasmTypeInfoNativeTypeTag, TAG(18)) \ V(kWasmExportedFunctionDataSignatureTag, TAG(19)) \ V(kWasmContinuationJmpbufTag, TAG(20)) \ V(kWasmIndirectFunctionTargetTag, TAG(21)) \ V(kArrayBufferExtensionTag, TAG(22)) // All external pointer tags. #define ALL_EXTERNAL_POINTER_TAGS(V) \ SHARED_EXTERNAL_POINTER_TAGS(V) \ PER_ISOLATE_EXTERNAL_POINTER_TAGS(V) #define EXTERNAL_POINTER_TAG_ENUM(Name, Tag) Name = Tag, #define MAKE_TAG(HasMarkBit, TypeTag) \ ((static_cast<uint64_t>(TypeTag) << kExternalPointerTagShift) | \ (HasMarkBit ? kExternalPointerMarkBit : 0)) enum ExternalPointerTag : uint64_t { // Empty tag value. Mostly used as placeholder. kExternalPointerNullTag = MAKE_TAG(1, 0b00000000), // External pointer tag that will match any external pointer. Use with care! kAnyExternalPointerTag = MAKE_TAG(1, 0b11111111), // The free entry tag has all type bits set so every type check with a // different type fails. It also doesn't have the mark bit set as free // entries are (by definition) not alive. kExternalPointerFreeEntryTag = MAKE_TAG(0, 0b11111111), // Evacuation entries are used during external pointer table compaction. kExternalPointerEvacuationEntryTag = MAKE_TAG(1, 0b11100111), ALL_EXTERNAL_POINTER_TAGS(EXTERNAL_POINTER_TAG_ENUM) }; #undef MAKE_TAG #undef TAG #undef EXTERNAL_POINTER_TAG_ENUM // clang-format on // True if the external pointer must be accessed from the shared isolate's // external pointer table. V8_INLINE static constexpr bool IsSharedExternalPointerType( ExternalPointerTag tag) { return tag >= kFirstSharedTag && tag <= kLastSharedTag; } // True if the external pointer may live in a read-only object, in which case // the table entry will be in the shared read-only segment of the external // pointer table. V8_INLINE static constexpr bool IsMaybeReadOnlyExternalPointerType( ExternalPointerTag tag) { return tag == kAccessorInfoGetterTag || tag == kAccessorInfoSetterTag || tag == kFunctionTemplateInfoCallbackTag; } // Sanity checks. #define CHECK_SHARED_EXTERNAL_POINTER_TAGS(Tag, ...) \ static_assert(IsSharedExternalPointerType(Tag)); #define CHECK_NON_SHARED_EXTERNAL_POINTER_TAGS(Tag, ...) \ static_assert(!IsSharedExternalPointerType(Tag)); SHARED_EXTERNAL_POINTER_TAGS(CHECK_SHARED_EXTERNAL_POINTER_TAGS) PER_ISOLATE_EXTERNAL_POINTER_TAGS(CHECK_NON_SHARED_EXTERNAL_POINTER_TAGS) #undef CHECK_NON_SHARED_EXTERNAL_POINTER_TAGS #undef CHECK_SHARED_EXTERNAL_POINTER_TAGS #undef SHARED_EXTERNAL_POINTER_TAGS #undef EXTERNAL_POINTER_TAGS // // Indirect Pointers. // // When the sandbox is enabled, indirect pointers are used to reference // HeapObjects that live outside of the sandbox (but are still managed by V8's // garbage collector). When object A references an object B through an indirect // pointer, object A will contain a IndirectPointerHandle, i.e. a shifted // 32-bit index, which identifies an entry in a pointer table (either the // trusted pointer table for TrustedObjects, or the code pointer table if it is // a Code object). This table entry then contains the actual pointer to object // B. Further, object B owns this pointer table entry, and it is responsible // for updating the "self-pointer" in the entry when it is relocated in memory. // This way, in contrast to "normal" pointers, indirect pointers never need to // be tracked by the GC (i.e. there is no remembered set for them). // These pointers do not exist when the sandbox is disabled. // An IndirectPointerHandle represents a 32-bit index into a pointer table. using IndirectPointerHandle = uint32_t; // A null handle always references an entry that contains nullptr. constexpr IndirectPointerHandle kNullIndirectPointerHandle = 0; // When the sandbox is enabled, indirect pointers are used to implement: // - TrustedPointers: an indirect pointer using the trusted pointer table (TPT) // and referencing a TrustedObject in one of the trusted heap spaces. // - CodePointers, an indirect pointer using the code pointer table (CPT) and // referencing a Code object together with its instruction stream. // // Trusted Pointers. // // A pointer to a TrustedObject. // When the sandbox is enabled, these are indirect pointers using the trusted // pointer table (TPT). They are used to reference trusted objects (located in // one of V8's trusted heap spaces, outside of the sandbox) from inside the // sandbox in a memory-safe way. When the sandbox is disabled, these are // regular tagged pointers. using TrustedPointerHandle = IndirectPointerHandle; // The size of the virtual memory reservation for the trusted pointer table. // As with the external pointer table, a maximum table size in combination with // shifted indices allows omitting bounds checks. constexpr size_t kTrustedPointerTableReservationSize = 64 * MB; // The trusted pointer handles are stores shifted to the left by this amount // to guarantee that they are smaller than the maximum table size. constexpr uint32_t kTrustedPointerHandleShift = 9; // A null handle always references an entry that contains nullptr. constexpr TrustedPointerHandle kNullTrustedPointerHandle = kNullIndirectPointerHandle; // The maximum number of entries in an trusted pointer table. constexpr int kTrustedPointerTableEntrySize = 8; constexpr int kTrustedPointerTableEntrySizeLog2 = 3; constexpr size_t kMaxTrustedPointers = kTrustedPointerTableReservationSize / kTrustedPointerTableEntrySize; static_assert((1 << (32 - kTrustedPointerHandleShift)) == kMaxTrustedPointers, "kTrustedPointerTableReservationSize and " "kTrustedPointerHandleShift don't match"); // // Code Pointers. // // A pointer to a Code object. // Essentially a specialized version of a trusted pointer that (when the // sandbox is enabled) uses the code pointer table (CPT) instead of the TPT. // Each entry in the CPT contains both a pointer to a Code object as well as a // pointer to the Code's entrypoint. This allows calling/jumping into Code with // one fewer memory access (compared to the case where the entrypoint pointer // first needs to be loaded from the Code object). As such, a CodePointerHandle // can be used both to obtain the referenced Code object and to directly load // its entrypoint. // // When the sandbox is disabled, these are regular tagged pointers. using CodePointerHandle = IndirectPointerHandle; // The size of the virtual memory reservation for the code pointer table. // As with the other tables, a maximum table size in combination with shifted // indices allows omitting bounds checks. constexpr size_t kCodePointerTableReservationSize = 16 * MB; // Code pointer handles are shifted by a different amount than indirect pointer // handles as the tables have a different maximum size. constexpr uint32_t kCodePointerHandleShift = 12; // A null handle always references an entry that contains nullptr. constexpr CodePointerHandle kNullCodePointerHandle = kNullIndirectPointerHandle; // It can sometimes be necessary to distinguish a code pointer handle from a // trusted pointer handle. A typical example would be a union trusted pointer // field that can refer to both Code objects and other trusted objects. To // support these use-cases, we use a simple marking scheme where some of the // low bits of a code pointer handle are set, while they will be unset on a // trusted pointer handle. This way, the correct table to resolve the handle // can be determined even in the absence of a type tag. constexpr uint32_t kCodePointerHandleMarker = 0x1; static_assert(kCodePointerHandleShift > 0); static_assert(kTrustedPointerHandleShift > 0); // The maximum number of entries in a code pointer table. constexpr int kCodePointerTableEntrySize = 16; constexpr int kCodePointerTableEntrySizeLog2 = 4; constexpr size_t kMaxCodePointers = kCodePointerTableReservationSize / kCodePointerTableEntrySize; static_assert( (1 << (32 - kCodePointerHandleShift)) == kMaxCodePointers, "kCodePointerTableReservationSize and kCodePointerHandleShift don't match"); constexpr int kCodePointerTableEntryEntrypointOffset = 0; constexpr int kCodePointerTableEntryCodeObjectOffset = 8; // Constants that can be used to mark places that should be modified once // certain types of objects are moved out of the sandbox and into trusted space. constexpr bool kRuntimeGeneratedCodeObjectsLiveInTrustedSpace = true; constexpr bool kBuiltinCodeObjectsLiveInTrustedSpace = false; constexpr bool kAllCodeObjectsLiveInTrustedSpace = kRuntimeGeneratedCodeObjectsLiveInTrustedSpace && kBuiltinCodeObjectsLiveInTrustedSpace; // {obj} must be the raw tagged pointer representation of a HeapObject // that's guaranteed to never be in ReadOnlySpace. V8_EXPORT internal::Isolate* IsolateFromNeverReadOnlySpaceObject(Address obj); // Returns if we need to throw when an error occurs. This infers the language // mode based on the current context and the closure. This returns true if the // language mode is strict. V8_EXPORT bool ShouldThrowOnError(internal::Isolate* isolate); /** * This class exports constants and functionality from within v8 that * is necessary to implement inline functions in the v8 api. Don't * depend on functions and constants defined here. */ class Internals { #ifdef V8_MAP_PACKING V8_INLINE static constexpr Address UnpackMapWord(Address mapword) { // TODO(wenyuzhao): Clear header metadata. return mapword ^ kMapWordXorMask; } #endif public: // These values match non-compiler-dependent values defined within // the implementation of v8. static const int kHeapObjectMapOffset = 0; static const int kMapInstanceTypeOffset = 1 * kApiTaggedSize + kApiInt32Size; static const int kStringResourceOffset = 1 * kApiTaggedSize + 2 * kApiInt32Size; static const int kOddballKindOffset = 4 * kApiTaggedSize + kApiDoubleSize; static const int kJSObjectHeaderSize = 3 * kApiTaggedSize; static const int kFixedArrayHeaderSize = 2 * kApiTaggedSize; static const int kEmbedderDataArrayHeaderSize = 2 * kApiTaggedSize; static const int kEmbedderDataSlotSize = kApiSystemPointerSize; #ifdef V8_ENABLE_SANDBOX static const int kEmbedderDataSlotExternalPointerOffset = kApiTaggedSize; #else static const int kEmbedderDataSlotExternalPointerOffset = 0; #endif static const int kNativeContextEmbedderDataOffset = 6 * kApiTaggedSize; static const int kStringRepresentationAndEncodingMask = 0x0f; static const int kStringEncodingMask = 0x8; static const int kExternalTwoByteRepresentationTag = 0x02; static const int kExternalOneByteRepresentationTag = 0x0a; static const uint32_t kNumIsolateDataSlots = 4; static const int kStackGuardSize = 8 * kApiSystemPointerSize; static const int kNumberOfBooleanFlags = 6; static const int kErrorMessageParamSize = 1; static const int kTablesAlignmentPaddingSize = 1; static const int kBuiltinTier0EntryTableSize = 7 * kApiSystemPointerSize; static const int kBuiltinTier0TableSize = 7 * kApiSystemPointerSize; static const int kLinearAllocationAreaSize = 3 * kApiSystemPointerSize; static const int kThreadLocalTopSize = 30 * kApiSystemPointerSize; static const int kHandleScopeDataSize = 2 * kApiSystemPointerSize + 2 * kApiInt32Size; // ExternalPointerTable and TrustedPointerTable layout guarantees. static const int kExternalPointerTableBasePointerOffset = 0; static const int kExternalPointerTableSize = 2 * kApiSystemPointerSize; static const int kTrustedPointerTableSize = 2 * kApiSystemPointerSize; static const int kTrustedPointerTableBasePointerOffset = 0; // IsolateData layout guarantees. static const int kIsolateCageBaseOffset = 0; static const int kIsolateStackGuardOffset = kIsolateCageBaseOffset + kApiSystemPointerSize; static const int kVariousBooleanFlagsOffset = kIsolateStackGuardOffset + kStackGuardSize; static const int kErrorMessageParamOffset = kVariousBooleanFlagsOffset + kNumberOfBooleanFlags; static const int kBuiltinTier0EntryTableOffset = kErrorMessageParamOffset + kErrorMessageParamSize + kTablesAlignmentPaddingSize; static const int kBuiltinTier0TableOffset = kBuiltinTier0EntryTableOffset + kBuiltinTier0EntryTableSize; static const int kNewAllocationInfoOffset = kBuiltinTier0TableOffset + kBuiltinTier0TableSize; static const int kOldAllocationInfoOffset = kNewAllocationInfoOffset + kLinearAllocationAreaSize; static const int kFastCCallAlignmentPaddingSize = kApiSystemPointerSize == 8 ? 0 : kApiSystemPointerSize; static const int kIsolateFastCCallCallerFpOffset = kOldAllocationInfoOffset + kLinearAllocationAreaSize + kFastCCallAlignmentPaddingSize; static const int kIsolateFastCCallCallerPcOffset = kIsolateFastCCallCallerFpOffset + kApiSystemPointerSize; static const int kIsolateFastApiCallTargetOffset = kIsolateFastCCallCallerPcOffset + kApiSystemPointerSize; static const int kIsolateLongTaskStatsCounterOffset = kIsolateFastApiCallTargetOffset + kApiSystemPointerSize; static const int kIsolateThreadLocalTopOffset = kIsolateLongTaskStatsCounterOffset + kApiSizetSize; static const int kIsolateHandleScopeDataOffset = kIsolateThreadLocalTopOffset + kThreadLocalTopSize; static const int kIsolateEmbedderDataOffset = kIsolateHandleScopeDataOffset + kHandleScopeDataSize; #ifdef V8_COMPRESS_POINTERS static const int kIsolateExternalPointerTableOffset = kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize; static const int kIsolateSharedExternalPointerTableAddressOffset = kIsolateExternalPointerTableOffset + kExternalPointerTableSize; #ifdef V8_ENABLE_SANDBOX static const int kIsolateTrustedCageBaseOffset = kIsolateSharedExternalPointerTableAddressOffset + kApiSystemPointerSize; static const int kIsolateTrustedPointerTableOffset = kIsolateTrustedCageBaseOffset + kApiSystemPointerSize; static const int kIsolateApiCallbackThunkArgumentOffset = kIsolateTrustedPointerTableOffset + kTrustedPointerTableSize; #else static const int kIsolateApiCallbackThunkArgumentOffset = kIsolateSharedExternalPointerTableAddressOffset + kApiSystemPointerSize; #endif // V8_ENABLE_SANDBOX #else static const int kIsolateApiCallbackThunkArgumentOffset = kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize; #endif // V8_COMPRESS_POINTERS static const int kContinuationPreservedEmbedderDataOffset = kIsolateApiCallbackThunkArgumentOffset + kApiSystemPointerSize; static const int kWasm64OOBOffsetAlignmentPaddingSize = 0; static const int kWasm64OOBOffsetOffset = kContinuationPreservedEmbedderDataOffset + kApiSystemPointerSize + kWasm64OOBOffsetAlignmentPaddingSize; static const int kIsolateRootsOffset = kWasm64OOBOffsetOffset + sizeof(int64_t); #if V8_STATIC_ROOTS_BOOL // These constants are copied from static-roots.h and guarded by static asserts. #define EXPORTED_STATIC_ROOTS_PTR_LIST(V) \ V(UndefinedValue, 0x69) \ V(NullValue, 0x85) \ V(TrueValue, 0xc9) \ V(FalseValue, 0xad) \ V(EmptyString, 0xa1) \ V(TheHoleValue, 0x719) using Tagged_t = uint32_t; struct StaticReadOnlyRoot { #define DEF_ROOT(name, value) static constexpr Tagged_t k##name = value; EXPORTED_STATIC_ROOTS_PTR_LIST(DEF_ROOT) #undef DEF_ROOT static constexpr Tagged_t kFirstStringMap = 0xe5; static constexpr Tagged_t kLastStringMap = 0x47d; #define PLUSONE(...) +1 static constexpr size_t kNumberOfExportedStaticRoots = 2 + EXPORTED_STATIC_ROOTS_PTR_LIST(PLUSONE); #undef PLUSONE }; #endif // V8_STATIC_ROOTS_BOOL static const int kUndefinedValueRootIndex = 4; static const int kTheHoleValueRootIndex = 5; static const int kNullValueRootIndex = 6; static const int kTrueValueRootIndex = 7; static const int kFalseValueRootIndex = 8; static const int kEmptyStringRootIndex = 9; static const int kNodeClassIdOffset = 1 * kApiSystemPointerSize; static const int kNodeFlagsOffset = 1 * kApiSystemPointerSize + 3; static const int kNodeStateMask = 0x3; static const int kNodeStateIsWeakValue = 2; static const int kFirstNonstringType = 0x80; static const int kOddballType = 0x83; static const int kForeignType = 0xcc; static const int kJSSpecialApiObjectType = 0x410; static const int kJSObjectType = 0x421; static const int kFirstJSApiObjectType = 0x422; static const int kLastJSApiObjectType = 0x80A; // Defines a range [kFirstEmbedderJSApiObjectType, kJSApiObjectTypesCount] // of JSApiObject instance type values that an embedder can use. static const int kFirstEmbedderJSApiObjectType = 0; static const int kLastEmbedderJSApiObjectType = kLastJSApiObjectType - kFirstJSApiObjectType; static const int kUndefinedOddballKind = 4; static const int kNullOddballKind = 3; // Constants used by PropertyCallbackInfo to check if we should throw when an // error occurs. static const int kThrowOnError = 0; static const int kDontThrow = 1; static const int kInferShouldThrowMode = 2; // Soft limit for AdjustAmountofExternalAllocatedMemory. Trigger an // incremental GC once the external memory reaches this limit. static constexpr int kExternalAllocationSoftLimit = 64 * 1024 * 1024; #ifdef V8_MAP_PACKING static const uintptr_t kMapWordMetadataMask = 0xffffULL << 48; // The lowest two bits of mapwords are always `0b10` static const uintptr_t kMapWordSignature = 0b10; // XORing a (non-compressed) map with this mask ensures that the two // low-order bits are 0b10. The 0 at the end makes this look like a Smi, // although real Smis have all lower 32 bits unset. We only rely on these // values passing as Smis in very few places. static const int kMapWordXorMask = 0b11; #endif V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate); V8_INLINE static void CheckInitialized(v8::Isolate* isolate) { #ifdef V8_ENABLE_CHECKS CheckInitializedImpl(isolate); #endif } V8_INLINE static constexpr bool HasHeapObjectTag(Address value) { return (value & kHeapObjectTagMask) == static_cast<Address>(kHeapObjectTag); } V8_INLINE static constexpr int SmiValue(Address value) { return PlatformSmiTagging::SmiToInt(value); } V8_INLINE static constexpr Address IntToSmi(int value) { return internal::IntToSmi(value); } V8_INLINE static constexpr bool IsValidSmi(intptr_t value) { return PlatformSmiTagging::IsValidSmi(value); } #if V8_STATIC_ROOTS_BOOL V8_INLINE static bool is_identical(Address obj, Tagged_t constant) { return static_cast<Tagged_t>(obj) == constant; } V8_INLINE static bool CheckInstanceMapRange(Address obj, Tagged_t first_map, Tagged_t last_map) { auto map = ReadRawField<Tagged_t>(obj, kHeapObjectMapOffset); #ifdef V8_MAP_PACKING map = UnpackMapWord(map); #endif return map >= first_map && map <= last_map; } #endif V8_INLINE static int GetInstanceType(Address obj) { Address map = ReadTaggedPointerField(obj, kHeapObjectMapOffset); #ifdef V8_MAP_PACKING map = UnpackMapWord(map); #endif return ReadRawField<uint16_t>(map, kMapInstanceTypeOffset); } V8_INLINE static Address LoadMap(Address obj) { if (!HasHeapObjectTag(obj)) return kNullAddress; Address map = ReadTaggedPointerField(obj, kHeapObjectMapOffset); #ifdef V8_MAP_PACKING map = UnpackMapWord(map); #endif return map; } V8_INLINE static int GetOddballKind(Address obj) { return SmiValue(ReadTaggedSignedField(obj, kOddballKindOffset)); } V8_INLINE static bool IsExternalTwoByteString(int instance_type) { int representation = (instance_type & kStringRepresentationAndEncodingMask); return representation == kExternalTwoByteRepresentationTag; } V8_INLINE static constexpr bool CanHaveInternalField(int instance_type) { static_assert(kJSObjectType + 1 == kFirstJSApiObjectType); static_assert(kJSObjectType < kLastJSApiObjectType); static_assert(kFirstJSApiObjectType < kLastJSApiObjectType); // Check for IsJSObject() || IsJSSpecialApiObject() || IsJSApiObject() return instance_type == kJSSpecialApiObjectType || // inlined version of base::IsInRange (static_cast<unsigned>(static_cast<unsigned>(instance_type) - static_cast<unsigned>(kJSObjectType)) <= static_cast<unsigned>(kLastJSApiObjectType - kJSObjectType)); } V8_INLINE static uint8_t GetNodeFlag(Address* obj, int shift) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; return *addr & static_cast<uint8_t>(1U << shift); } V8_INLINE static void UpdateNodeFlag(Address* obj, bool value, int shift) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; uint8_t mask = static_cast<uint8_t>(1U << shift); *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift)); } V8_INLINE static uint8_t GetNodeState(Address* obj) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; return *addr & kNodeStateMask; } V8_INLINE static void UpdateNodeState(Address* obj, uint8_t value) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value); } V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot, void* data) { Address addr = reinterpret_cast<Address>(isolate) + kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize; *reinterpret_cast<void**>(addr) = data; } V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate, uint32_t slot) { Address addr = reinterpret_cast<Address>(isolate) + kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize; return *reinterpret_cast<void* const*>(addr); } V8_INLINE static void IncrementLongTasksStatsCounter(v8::Isolate* isolate) { Address addr = reinterpret_cast<Address>(isolate) + kIsolateLongTaskStatsCounterOffset; ++(*reinterpret_cast<size_t*>(addr)); } V8_INLINE static Address* GetRootSlot(v8::Isolate* isolate, int index) { Address addr = reinterpret_cast<Address>(isolate) + kIsolateRootsOffset + index * kApiSystemPointerSize; return reinterpret_cast<Address*>(addr); } V8_INLINE static Address GetRoot(v8::Isolate* isolate, int index) { #if V8_STATIC_ROOTS_BOOL Address base = *reinterpret_cast<Address*>( reinterpret_cast<uintptr_t>(isolate) + kIsolateCageBaseOffset); switch (index) { #define DECOMPRESS_ROOT(name, ...) \ case k##name##RootIndex: \ return base + StaticReadOnlyRoot::k##name; EXPORTED_STATIC_ROOTS_PTR_LIST(DECOMPRESS_ROOT) #undef DECOMPRESS_ROOT #undef EXPORTED_STATIC_ROOTS_PTR_LIST default: break; } #endif // V8_STATIC_ROOTS_BOOL return *GetRootSlot(isolate, index); } #ifdef V8_ENABLE_SANDBOX V8_INLINE static Address* GetExternalPointerTableBase(v8::Isolate* isolate) { Address addr = reinterpret_cast<Address>(isolate) + kIsolateExternalPointerTableOffset + kExternalPointerTableBasePointerOffset; return *reinterpret_cast<Address**>(addr); } V8_INLINE static Address* GetSharedExternalPointerTableBase( v8::Isolate* isolate) { Address addr = reinterpret_cast<Address>(isolate) + kIsolateSharedExternalPointerTableAddressOffset; addr = *reinterpret_cast<Address*>(addr); addr += kExternalPointerTableBasePointerOffset; return *reinterpret_cast<Address**>(addr); } #endif template <typename T> V8_INLINE static T ReadRawField(Address heap_object_ptr, int offset) { Address addr = heap_object_ptr + offset - kHeapObjectTag; #ifdef V8_COMPRESS_POINTERS if (sizeof(T) > kApiTaggedSize) { // TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size // fields (external pointers, doubles and BigInt data) are only // kTaggedSize aligned so we have to use unaligned pointer friendly way of // accessing them in order to avoid undefined behavior in C++ code. T r; memcpy(&r, reinterpret_cast<void*>(addr), sizeof(T)); return r; } #endif return *reinterpret_cast<const T*>(addr); } V8_INLINE static Address ReadTaggedPointerField(Address heap_object_ptr, int offset) { #ifdef V8_COMPRESS_POINTERS uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset); Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr); return base + static_cast<Address>(static_cast<uintptr_t>(value)); #else return ReadRawField<Address>(heap_object_ptr, offset); #endif } V8_INLINE static Address ReadTaggedSignedField(Address heap_object_ptr, int offset) { #ifdef V8_COMPRESS_POINTERS uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset); return static_cast<Address>(static_cast<uintptr_t>(value)); #else return ReadRawField<Address>(heap_object_ptr, offset); #endif } V8_INLINE static v8::Isolate* GetIsolateForSandbox(Address obj) { #ifdef V8_ENABLE_SANDBOX return reinterpret_cast<v8::Isolate*>( internal::IsolateFromNeverReadOnlySpaceObject(obj)); #else // Not used in non-sandbox mode. return nullptr; #endif } template <ExternalPointerTag tag> V8_INLINE static Address ReadExternalPointerField(v8::Isolate* isolate, Address heap_object_ptr, int offset) { #ifdef V8_ENABLE_SANDBOX static_assert(tag != kExternalPointerNullTag); // See src/sandbox/external-pointer-table-inl.h. Logic duplicated here so // it can be inlined and doesn't require an additional call. Address* table = IsSharedExternalPointerType(tag) ? GetSharedExternalPointerTableBase(isolate) : GetExternalPointerTableBase(isolate); internal::ExternalPointerHandle handle = ReadRawField<ExternalPointerHandle>(heap_object_ptr, offset); uint32_t index = handle >> kExternalPointerIndexShift; std::atomic<Address>* ptr = reinterpret_cast<std::atomic<Address>*>(&table[index]); Address entry = std::atomic_load_explicit(ptr, std::memory_order_relaxed); return entry & ~tag; #else return ReadRawField<Address>(heap_object_ptr, offset); #endif // V8_ENABLE_SANDBOX } #ifdef V8_COMPRESS_POINTERS V8_INLINE static Address GetPtrComprCageBaseFromOnHeapAddress(Address addr) { return addr & -static_cast<intptr_t>(kPtrComprCageBaseAlignment); } V8_INLINE static uint32_t CompressTagged(Address value) { return static_cast<uint32_t>(value); } V8_INLINE static Address DecompressTaggedField(Address heap_object_ptr, uint32_t value) { Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr); return base + static_cast<Address>(static_cast<uintptr_t>(value)); } #endif // V8_COMPRESS_POINTERS }; // Only perform cast check for types derived from v8::Data since // other types do not implement the Cast method. template <bool PerformCheck> struct CastCheck { template <class T> static void Perform(T* data); }; template <> template <class T> void CastCheck<true>::Perform(T* data) { T::Cast(data); } template <> template <class T> void CastCheck<false>::Perform(T* data) {} template <class T> V8_INLINE void PerformCastCheck(T* data) { CastCheck<std::is_base_of<Data, T>::value && !std::is_same<Data, std::remove_cv_t<T>>::value>::Perform(data); } // A base class for backing stores, which is needed due to vagaries of // how static casts work with std::shared_ptr. class BackingStoreBase {}; // The maximum value in enum GarbageCollectionReason, defined in heap.h. // This is needed for histograms sampling garbage collection reasons. constexpr int kGarbageCollectionReasonMaxValue = 27; // Base class for the address block allocator compatible with standard // containers, which registers its allocated range as strong roots. class V8_EXPORT StrongRootAllocatorBase { public: Heap* heap() const { return heap_; } bool operator==(const StrongRootAllocatorBase& other) const { return heap_ == other.heap_; } bool operator!=(const StrongRootAllocatorBase& other) const { return heap_ != other.heap_; } protected: explicit StrongRootAllocatorBase(Heap* heap) : heap_(heap) {} explicit StrongRootAllocatorBase(v8::Isolate* isolate); // Allocate/deallocate a range of n elements of type internal::Address. Address* allocate_impl(size_t n); void deallocate_impl(Address* p, size_t n) noexcept; private: Heap* heap_; }; // The general version of this template behaves just as std::allocator, with // the exception that the constructor takes the isolate as parameter. Only // specialized versions, e.g., internal::StrongRootAllocator<internal::Address> // and internal::StrongRootAllocator<v8::Local<T>> register the allocated range // as strong roots. template <typename T> class StrongRootAllocator : public StrongRootAllocatorBase, private std::allocator<T> { public: using value_type = T; explicit StrongRootAllocator(Heap* heap) : StrongRootAllocatorBase(heap) {} explicit StrongRootAllocator(v8::Isolate* isolate) : StrongRootAllocatorBase(isolate) {} template <typename U> StrongRootAllocator(const StrongRootAllocator<U>& other) noexcept : StrongRootAllocatorBase(other) {} using std::allocator<T>::allocate; using std::allocator<T>::deallocate; }; // A class of iterators that wrap some different iterator type. // If specified, ElementType is the type of element accessed by the wrapper // iterator; in this case, the actual reference and pointer types of Iterator // must be convertible to ElementType& and ElementType*, respectively. template <typename Iterator, typename ElementType = void> class WrappedIterator { public: static_assert( !std::is_void_v<ElementType> || (std::is_convertible_v<typename std::iterator_traits<Iterator>::pointer, ElementType*> && std::is_convertible_v<typename std::iterator_traits<Iterator>::reference, ElementType&>)); using iterator_category = typename std::iterator_traits<Iterator>::iterator_category; using difference_type = typename std::iterator_traits<Iterator>::difference_type; using value_type = std::conditional_t<std::is_void_v<ElementType>, typename std::iterator_traits<Iterator>::value_type, ElementType>; using pointer = std::conditional_t<std::is_void_v<ElementType>, typename std::iterator_traits<Iterator>::pointer, ElementType*>; using reference = std::conditional_t<std::is_void_v<ElementType>, typename std::iterator_traits<Iterator>::reference, ElementType&>; constexpr WrappedIterator() noexcept : it_() {} constexpr explicit WrappedIterator(Iterator it) noexcept : it_(it) {} template <typename OtherIterator, typename OtherElementType, std::enable_if_t<std::is_convertible_v<OtherIterator, Iterator>, bool> = true> constexpr WrappedIterator( const WrappedIterator<OtherIterator, OtherElementType>& it) noexcept : it_(it.base()) {} constexpr reference operator*() const noexcept { return *it_; } constexpr pointer operator->() const noexcept { return it_.operator->(); } constexpr WrappedIterator& operator++() noexcept { ++it_; return *this; } constexpr WrappedIterator operator++(int) noexcept { WrappedIterator result(*this); ++(*this); return result; } constexpr WrappedIterator& operator--() noexcept { --it_; return *this; } constexpr WrappedIterator operator--(int) noexcept { WrappedIterator result(*this); --(*this); return result; } constexpr WrappedIterator operator+(difference_type n) const noexcept { WrappedIterator result(*this); result += n; return result; } constexpr WrappedIterator& operator+=(difference_type n) noexcept { it_ += n; return *this; } constexpr WrappedIterator operator-(difference_type n) const noexcept { return *this + (-n); } constexpr WrappedIterator& operator-=(difference_type n) noexcept { *this += -n; return *this; } constexpr reference operator[](difference_type n) const noexcept { return it_[n]; } constexpr Iterator base() const noexcept { return it_; } private: template <typename OtherIterator, typename OtherElementType> friend class WrappedIterator; private: Iterator it_; }; template <typename Iterator, typename ElementType, typename OtherIterator, typename OtherElementType> constexpr bool operator==( const WrappedIterator<Iterator, ElementType>& x, const WrappedIterator<OtherIterator, OtherElementType>& y) noexcept { return x.base() == y.base(); } template <typename Iterator, typename ElementType, typename OtherIterator, typename OtherElementType> constexpr bool operator<( const WrappedIterator<Iterator, ElementType>& x, const WrappedIterator<OtherIterator, OtherElementType>& y) noexcept { return x.base() < y.base(); } template <typename Iterator, typename ElementType, typename OtherIterator, typename OtherElementType> constexpr bool operator!=( const WrappedIterator<Iterator, ElementType>& x, const WrappedIterator<OtherIterator, OtherElementType>& y) noexcept { return !(x == y); } template <typename Iterator, typename ElementType, typename OtherIterator, typename OtherElementType> constexpr bool operator>( const WrappedIterator<Iterator, ElementType>& x, const WrappedIterator<OtherIterator, OtherElementType>& y) noexcept { return y < x; } template <typename Iterator, typename ElementType, typename OtherIterator, typename OtherElementType> constexpr bool operator>=( const WrappedIterator<Iterator, ElementType>& x, const WrappedIterator<OtherIterator, OtherElementType>& y) noexcept { return !(x < y); } template <typename Iterator, typename ElementType, typename OtherIterator, typename OtherElementType> constexpr bool operator<=( const WrappedIterator<Iterator, ElementType>& x, const WrappedIterator<OtherIterator, OtherElementType>& y) noexcept { return !(y < x); } template <typename Iterator, typename ElementType, typename OtherIterator, typename OtherElementType> constexpr auto operator-( const WrappedIterator<Iterator, ElementType>& x, const WrappedIterator<OtherIterator, OtherElementType>& y) noexcept -> decltype(x.base() - y.base()) { return x.base() - y.base(); } template <typename Iterator, typename ElementType> constexpr WrappedIterator<Iterator> operator+( typename WrappedIterator<Iterator, ElementType>::difference_type n, const WrappedIterator<Iterator, ElementType>& x) noexcept { x += n; return x; } // Helper functions about values contained in handles. // A value is either an indirect pointer or a direct pointer, depending on // whether direct local support is enabled. class ValueHelper final { public: #ifdef V8_ENABLE_DIRECT_LOCAL static constexpr Address kTaggedNullAddress = 1; static constexpr Address kEmpty = kTaggedNullAddress; #else static constexpr Address kEmpty = kNullAddress; #endif // V8_ENABLE_DIRECT_LOCAL template <typename T> V8_INLINE static bool IsEmpty(T* value) { return reinterpret_cast<Address>(value) == kEmpty; } // Returns a handle's "value" for all kinds of abstract handles. For Local, // it is equivalent to `*handle`. The variadic parameters support handle // types with extra type parameters, like `Persistent<T, M>`. template <template <typename T, typename... Ms> typename H, typename T, typename... Ms> V8_INLINE static T* HandleAsValue(const H<T, Ms...>& handle) { return handle.template value<T>(); } #ifdef V8_ENABLE_DIRECT_LOCAL template <typename T> V8_INLINE static Address ValueAsAddress(const T* value) { return reinterpret_cast<Address>(value); } template <typename T, bool check_null = true, typename S> V8_INLINE static T* SlotAsValue(S* slot) { if (check_null && slot == nullptr) { return reinterpret_cast<T*>(kTaggedNullAddress); } return *reinterpret_cast<T**>(slot); } #else // !V8_ENABLE_DIRECT_LOCAL template <typename T> V8_INLINE static Address ValueAsAddress(const T* value) { return *reinterpret_cast<const Address*>(value); } template <typename T, bool check_null = true, typename S> V8_INLINE static T* SlotAsValue(S* slot) { return reinterpret_cast<T*>(slot); } #endif // V8_ENABLE_DIRECT_LOCAL }; /** * Helper functions about handles. */ class HandleHelper final { public: /** * Checks whether two handles are equal. * They are equal iff they are both empty or they are both non-empty and the * objects to which they refer are physically equal. * * If both handles refer to JS objects, this is the same as strict equality. * For primitives, such as numbers or strings, a `false` return value does not * indicate that the values aren't equal in the JavaScript sense. * Use `Value::StrictEquals()` to check primitives for equality. */ template <typename T1, typename T2> V8_INLINE static bool EqualHandles(const T1& lhs, const T2& rhs) { if (lhs.IsEmpty()) return rhs.IsEmpty(); if (rhs.IsEmpty()) return false; return lhs.ptr() == rhs.ptr(); } static V8_EXPORT bool IsOnStack(const void* ptr); static V8_EXPORT void VerifyOnStack(const void* ptr); static V8_EXPORT void VerifyOnMainThread(); }; V8_EXPORT void VerifyHandleIsNonEmpty(bool is_empty); } // namespace internal } // namespace v8 #endif // INCLUDE_V8_INTERNAL_H_