????
Current Path : /proc/self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/astroid/brain/ |
Current File : //proc/self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/astroid/brain/brain_random.py |
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/main/LICENSE # Copyright (c) https://github.com/PyCQA/astroid/blob/main/CONTRIBUTORS.txt from __future__ import annotations import random from astroid import helpers from astroid.context import InferenceContext from astroid.exceptions import UseInferenceDefault from astroid.inference_tip import inference_tip from astroid.manager import AstroidManager from astroid.nodes.node_classes import ( Attribute, Call, Const, EvaluatedObject, List, Name, Set, Tuple, ) ACCEPTED_ITERABLES_FOR_SAMPLE = (List, Set, Tuple) def _clone_node_with_lineno(node, parent, lineno): if isinstance(node, EvaluatedObject): node = node.original cls = node.__class__ other_fields = node._other_fields _astroid_fields = node._astroid_fields init_params = {"lineno": lineno, "col_offset": node.col_offset, "parent": parent} postinit_params = {param: getattr(node, param) for param in _astroid_fields} if other_fields: init_params.update({param: getattr(node, param) for param in other_fields}) new_node = cls(**init_params) if hasattr(node, "postinit") and _astroid_fields: new_node.postinit(**postinit_params) return new_node def infer_random_sample(node, context: InferenceContext | None = None): if len(node.args) != 2: raise UseInferenceDefault inferred_length = helpers.safe_infer(node.args[1], context=context) if not isinstance(inferred_length, Const): raise UseInferenceDefault if not isinstance(inferred_length.value, int): raise UseInferenceDefault inferred_sequence = helpers.safe_infer(node.args[0], context=context) if not inferred_sequence: raise UseInferenceDefault if not isinstance(inferred_sequence, ACCEPTED_ITERABLES_FOR_SAMPLE): raise UseInferenceDefault if inferred_length.value > len(inferred_sequence.elts): # In this case, this will raise a ValueError raise UseInferenceDefault try: elts = random.sample(inferred_sequence.elts, inferred_length.value) except ValueError as exc: raise UseInferenceDefault from exc new_node = List(lineno=node.lineno, col_offset=node.col_offset, parent=node.scope()) new_elts = [ _clone_node_with_lineno(elt, parent=new_node, lineno=new_node.lineno) for elt in elts ] new_node.postinit(new_elts) return iter((new_node,)) def _looks_like_random_sample(node) -> bool: func = node.func if isinstance(func, Attribute): return func.attrname == "sample" if isinstance(func, Name): return func.name == "sample" return False AstroidManager().register_transform( Call, inference_tip(infer_random_sample), _looks_like_random_sample )