????
Current Path : /proc/thread-self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/pylint/lint/ |
Current File : //proc/thread-self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/pylint/lint/parallel.py |
# Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html # For details: https://github.com/PyCQA/pylint/blob/main/LICENSE # Copyright (c) https://github.com/PyCQA/pylint/blob/main/CONTRIBUTORS.txt from __future__ import annotations import functools import warnings from collections import defaultdict from collections.abc import Iterable, Sequence from typing import TYPE_CHECKING, Any import dill from pylint import reporters from pylint.lint.utils import _augment_sys_path from pylint.message import Message from pylint.typing import FileItem from pylint.utils import LinterStats, merge_stats try: import multiprocessing except ImportError: multiprocessing = None # type: ignore[assignment] try: from concurrent.futures import ProcessPoolExecutor except ImportError: ProcessPoolExecutor = None # type: ignore[assignment,misc] if TYPE_CHECKING: from pylint.lint import PyLinter # PyLinter object used by worker processes when checking files using parallel mode # should only be used by the worker processes _worker_linter: PyLinter | None = None def _worker_initialize( linter: bytes, extra_packages_paths: Sequence[str] | None = None ) -> None: """Function called to initialize a worker for a Process within a concurrent Pool. :param linter: A linter-class (PyLinter) instance pickled with dill :param extra_packages_paths: Extra entries to be added to sys.path """ global _worker_linter # pylint: disable=global-statement _worker_linter = dill.loads(linter) assert _worker_linter # On the worker process side the messages are just collected and passed back to # parent process as _worker_check_file function's return value _worker_linter.set_reporter(reporters.CollectingReporter()) _worker_linter.open() if extra_packages_paths: _augment_sys_path(extra_packages_paths) def _worker_check_single_file( file_item: FileItem, ) -> tuple[ int, # TODO: 3.0: Make this only str after deprecation has been removed str | None, str, str | None, list[Message], LinterStats, int, defaultdict[str, list[Any]], ]: if not _worker_linter: raise RuntimeError("Worker linter not yet initialised") _worker_linter.open() _worker_linter.check_single_file_item(file_item) mapreduce_data = defaultdict(list) for checker in _worker_linter.get_checkers(): data = checker.get_map_data() if data is not None: mapreduce_data[checker.name].append(data) msgs = _worker_linter.reporter.messages assert isinstance(_worker_linter.reporter, reporters.CollectingReporter) _worker_linter.reporter.reset() if _worker_linter.current_name is None: warnings.warn( ( "In pylint 3.0 the current_name attribute of the linter object should be a string. " "If unknown it should be initialized as an empty string." ), DeprecationWarning, ) return ( id(multiprocessing.current_process()), _worker_linter.current_name, file_item.filepath, _worker_linter.file_state.base_name, msgs, _worker_linter.stats, _worker_linter.msg_status, mapreduce_data, ) def _merge_mapreduce_data( linter: PyLinter, all_mapreduce_data: defaultdict[int, list[defaultdict[str, list[Any]]]], ) -> None: """Merges map/reduce data across workers, invoking relevant APIs on checkers.""" # First collate the data and prepare it, so we can send it to the checkers for # validation. The intent here is to collect all the mapreduce data for all checker- # runs across processes - that will then be passed to a static method on the # checkers to be reduced and further processed. collated_map_reduce_data: defaultdict[str, list[Any]] = defaultdict(list) for linter_data in all_mapreduce_data.values(): for run_data in linter_data: for checker_name, data in run_data.items(): collated_map_reduce_data[checker_name].extend(data) # Send the data to checkers that support/require consolidated data original_checkers = linter.get_checkers() for checker in original_checkers: if checker.name in collated_map_reduce_data: # Assume that if the check has returned map/reduce data that it has the # reducer function checker.reduce_map_data(linter, collated_map_reduce_data[checker.name]) def check_parallel( linter: PyLinter, jobs: int, files: Iterable[FileItem], extra_packages_paths: Sequence[str] | None = None, ) -> None: """Use the given linter to lint the files with given amount of workers (jobs). This splits the work filestream-by-filestream. If you need to do work across multiple files, as in the similarity-checker, then implement the map/reduce mixin functionality. """ # The linter is inherited by all the pool's workers, i.e. the linter # is identical to the linter object here. This is required so that # a custom PyLinter object can be used. initializer = functools.partial( _worker_initialize, extra_packages_paths=extra_packages_paths ) with ProcessPoolExecutor( max_workers=jobs, initializer=initializer, initargs=(dill.dumps(linter),) ) as executor: linter.open() all_stats = [] all_mapreduce_data: defaultdict[ int, list[defaultdict[str, list[Any]]] ] = defaultdict(list) # Maps each file to be worked on by a single _worker_check_single_file() call, # collecting any map/reduce data by checker module so that we can 'reduce' it # later. for ( worker_idx, # used to merge map/reduce data across workers module, file_path, base_name, messages, stats, msg_status, mapreduce_data, ) in executor.map(_worker_check_single_file, files): linter.file_state.base_name = base_name linter.file_state._is_base_filestate = False linter.set_current_module(module, file_path) for msg in messages: linter.reporter.handle_message(msg) all_stats.append(stats) all_mapreduce_data[worker_idx].append(mapreduce_data) linter.msg_status |= msg_status _merge_mapreduce_data(linter, all_mapreduce_data) linter.stats = merge_stats([linter.stats] + all_stats)