????
Current Path : /proc/thread-self/root/opt/cpanel/ea-nodejs22/include/node/ |
Current File : //proc/thread-self/root/opt/cpanel/ea-nodejs22/include/node/v8-function-callback.h |
// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef INCLUDE_V8_FUNCTION_CALLBACK_H_ #define INCLUDE_V8_FUNCTION_CALLBACK_H_ #include <cstdint> #include <limits> #include "v8-local-handle.h" // NOLINT(build/include_directory) #include "v8-primitive.h" // NOLINT(build/include_directory) #include "v8config.h" // NOLINT(build/include_directory) namespace v8 { template <typename T> class BasicTracedReference; template <typename T> class Global; class Object; class Value; namespace internal { class FunctionCallbackArguments; class PropertyCallbackArguments; class Builtins; } // namespace internal namespace debug { class ConsoleCallArguments; } // namespace debug template <typename T> class ReturnValue { public: template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that) : value_(that.value_) { static_assert(std::is_base_of<T, S>::value, "type check"); } // Local setters template <typename S> V8_INLINE void Set(const Global<S>& handle); template <typename S> V8_INLINE void SetNonEmpty(const Global<S>& handle); template <typename S> V8_INLINE void Set(const BasicTracedReference<S>& handle); template <typename S> V8_INLINE void SetNonEmpty(const BasicTracedReference<S>& handle); template <typename S> V8_INLINE void Set(const Local<S> handle); template <typename S> V8_INLINE void SetNonEmpty(const Local<S> handle); // Fast primitive setters V8_INLINE void Set(bool value); V8_INLINE void Set(double i); V8_INLINE void Set(int32_t i); V8_INLINE void Set(uint32_t i); V8_INLINE void Set(uint16_t); // Fast JS primitive setters V8_INLINE void SetNull(); V8_INLINE void SetUndefined(); V8_INLINE void SetEmptyString(); // Convenience getter for Isolate V8_INLINE Isolate* GetIsolate() const; // Pointer setter: Uncompilable to prevent inadvertent misuse. template <typename S> V8_INLINE void Set(S* whatever); // Getter. Creates a new Local<> so it comes with a certain performance // hit. If the ReturnValue was not yet set, this will return the undefined // value. V8_INLINE Local<Value> Get() const; private: template <class F> friend class ReturnValue; template <class F> friend class FunctionCallbackInfo; template <class F> friend class PropertyCallbackInfo; template <class F, class G, class H> friend class PersistentValueMapBase; V8_INLINE void SetInternal(internal::Address value); // Setting the hole value has different meanings depending on the usage: // - for function template callbacks it means that the callback returns // the undefined value, // - for property getter callbacks is means that the callback returns // the undefined value (for property setter callbacks the value returned // is ignored), // - for interceptor callbacks it means that the request was not handled. V8_INLINE void SetTheHole(); V8_INLINE explicit ReturnValue(internal::Address* slot); // See FunctionCallbackInfo. static constexpr int kIsolateValueIndex = -2; internal::Address* value_; }; /** * The argument information given to function call callbacks. This * class provides access to information about the context of the call, * including the receiver, the number and values of arguments, and * the holder of the function. */ template <typename T> class FunctionCallbackInfo { public: /** The number of available arguments. */ V8_INLINE int Length() const; /** * Accessor for the available arguments. Returns `undefined` if the index * is out of bounds. */ V8_INLINE Local<Value> operator[](int i) const; /** Returns the receiver. This corresponds to the "this" value. */ V8_INLINE Local<Object> This() const; /** * If the callback was created without a Signature, this is the same * value as This(). If there is a signature, and the signature didn't match * This() but one of its hidden prototypes, this will be the respective * hidden prototype. * * Note that this is not the prototype of This() on which the accessor * referencing this callback was found (which in V8 internally is often * referred to as holder [sic]). */ V8_INLINE Local<Object> Holder() const; /** For construct calls, this returns the "new.target" value. */ V8_INLINE Local<Value> NewTarget() const; /** Indicates whether this is a regular call or a construct call. */ V8_INLINE bool IsConstructCall() const; /** The data argument specified when creating the callback. */ V8_INLINE Local<Value> Data() const; /** The current Isolate. */ V8_INLINE Isolate* GetIsolate() const; /** The ReturnValue for the call. */ V8_INLINE ReturnValue<T> GetReturnValue() const; private: friend class internal::FunctionCallbackArguments; friend class internal::CustomArguments<FunctionCallbackInfo>; friend class debug::ConsoleCallArguments; static constexpr int kHolderIndex = 0; static constexpr int kIsolateIndex = 1; static constexpr int kUnusedIndex = 2; static constexpr int kReturnValueIndex = 3; static constexpr int kDataIndex = 4; static constexpr int kNewTargetIndex = 5; static constexpr int kArgsLength = 6; static constexpr int kArgsLengthWithReceiver = kArgsLength + 1; // Codegen constants: static constexpr int kSize = 3 * internal::kApiSystemPointerSize; static constexpr int kImplicitArgsOffset = 0; static constexpr int kValuesOffset = kImplicitArgsOffset + internal::kApiSystemPointerSize; static constexpr int kLengthOffset = kValuesOffset + internal::kApiSystemPointerSize; static constexpr int kThisValuesIndex = -1; static_assert(ReturnValue<Value>::kIsolateValueIndex == kIsolateIndex - kReturnValueIndex); V8_INLINE FunctionCallbackInfo(internal::Address* implicit_args, internal::Address* values, int length); internal::Address* implicit_args_; internal::Address* values_; int length_; }; /** * The information passed to a property callback about the context * of the property access. */ template <typename T> class PropertyCallbackInfo { public: /** * \return The isolate of the property access. */ V8_INLINE Isolate* GetIsolate() const; /** * \return The data set in the configuration, i.e., in * `NamedPropertyHandlerConfiguration` or * `IndexedPropertyHandlerConfiguration.` */ V8_INLINE Local<Value> Data() const; /** * \return The receiver. In many cases, this is the object on which the * property access was intercepted. When using * `Reflect.get`, `Function.prototype.call`, or similar functions, it is the * object passed in as receiver or thisArg. * * \code * void GetterCallback(Local<Name> name, * const v8::PropertyCallbackInfo<v8::Value>& info) { * auto context = info.GetIsolate()->GetCurrentContext(); * * v8::Local<v8::Value> a_this = * info.This() * ->GetRealNamedProperty(context, v8_str("a")) * .ToLocalChecked(); * v8::Local<v8::Value> a_holder = * info.Holder() * ->GetRealNamedProperty(context, v8_str("a")) * .ToLocalChecked(); * * CHECK(v8_str("r")->Equals(context, a_this).FromJust()); * CHECK(v8_str("obj")->Equals(context, a_holder).FromJust()); * * info.GetReturnValue().Set(name); * } * * v8::Local<v8::FunctionTemplate> templ = * v8::FunctionTemplate::New(isolate); * templ->InstanceTemplate()->SetHandler( * v8::NamedPropertyHandlerConfiguration(GetterCallback)); * LocalContext env; * env->Global() * ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local()) * .ToLocalChecked() * ->NewInstance(env.local()) * .ToLocalChecked()) * .FromJust(); * * CompileRun("obj.a = 'obj'; var r = {a: 'r'}; Reflect.get(obj, 'x', r)"); * \endcode */ V8_INLINE Local<Object> This() const; /** * \return The object in the prototype chain of the receiver that has the * interceptor. Suppose you have `x` and its prototype is `y`, and `y` * has an interceptor. Then `info.This()` is `x` and `info.Holder()` is `y`. * The Holder() could be a hidden object (the global object, rather * than the global proxy). * * \note For security reasons, do not pass the object back into the runtime. */ V8_INLINE Local<Object> Holder() const; /** * \return The return value of the callback. * Can be changed by calling Set(). * \code * info.GetReturnValue().Set(...) * \endcode * */ V8_INLINE ReturnValue<T> GetReturnValue() const; /** * \return True if the intercepted function should throw if an error occurs. * Usually, `true` corresponds to `'use strict'`. * * \note Always `false` when intercepting `Reflect.set()` * independent of the language mode. */ V8_INLINE bool ShouldThrowOnError() const; private: friend class MacroAssembler; friend class internal::PropertyCallbackArguments; friend class internal::CustomArguments<PropertyCallbackInfo>; static constexpr int kShouldThrowOnErrorIndex = 0; static constexpr int kHolderIndex = 1; static constexpr int kIsolateIndex = 2; static constexpr int kUnusedIndex = 3; static constexpr int kReturnValueIndex = 4; static constexpr int kDataIndex = 5; static constexpr int kThisIndex = 6; static constexpr int kArgsLength = 7; static constexpr int kSize = 1 * internal::kApiSystemPointerSize; V8_INLINE explicit PropertyCallbackInfo(internal::Address* args) : args_(args) {} internal::Address* args_; }; using FunctionCallback = void (*)(const FunctionCallbackInfo<Value>& info); // --- Implementation --- template <typename T> ReturnValue<T>::ReturnValue(internal::Address* slot) : value_(slot) {} template <typename T> void ReturnValue<T>::SetInternal(internal::Address value) { #if V8_STATIC_ROOTS_BOOL using I = internal::Internals; // Ensure that the upper 32-bits are not modified. Compiler should be // able to optimize this to a store of a lower 32-bits of the value. // This is fine since the callback can return only JavaScript values which // are either Smis or heap objects allocated in the main cage. *value_ = I::DecompressTaggedField(*value_, I::CompressTagged(value)); #else *value_ = value; #endif // V8_STATIC_ROOTS_BOOL } template <typename T> template <typename S> void ReturnValue<T>::Set(const Global<S>& handle) { static_assert(std::is_base_of<T, S>::value, "type check"); if (V8_UNLIKELY(handle.IsEmpty())) { SetTheHole(); } else { SetInternal(handle.ptr()); } } template <typename T> template <typename S> void ReturnValue<T>::SetNonEmpty(const Global<S>& handle) { static_assert(std::is_base_of<T, S>::value, "type check"); #ifdef V8_ENABLE_CHECKS internal::VerifyHandleIsNonEmpty(handle.IsEmpty()); #endif // V8_ENABLE_CHECKS SetInternal(handle.ptr()); } template <typename T> template <typename S> void ReturnValue<T>::Set(const BasicTracedReference<S>& handle) { static_assert(std::is_base_of<T, S>::value, "type check"); if (V8_UNLIKELY(handle.IsEmpty())) { SetTheHole(); } else { SetInternal(handle.ptr()); } } template <typename T> template <typename S> void ReturnValue<T>::SetNonEmpty(const BasicTracedReference<S>& handle) { static_assert(std::is_base_of<T, S>::value, "type check"); #ifdef V8_ENABLE_CHECKS internal::VerifyHandleIsNonEmpty(handle.IsEmpty()); #endif // V8_ENABLE_CHECKS SetInternal(handle.ptr()); } template <typename T> template <typename S> void ReturnValue<T>::Set(const Local<S> handle) { static_assert(std::is_void<T>::value || std::is_base_of<T, S>::value, "type check"); if (V8_UNLIKELY(handle.IsEmpty())) { SetTheHole(); } else { SetInternal(handle.ptr()); } } template <typename T> template <typename S> void ReturnValue<T>::SetNonEmpty(const Local<S> handle) { static_assert(std::is_void<T>::value || std::is_base_of<T, S>::value, "type check"); #ifdef V8_ENABLE_CHECKS internal::VerifyHandleIsNonEmpty(handle.IsEmpty()); #endif // V8_ENABLE_CHECKS SetInternal(handle.ptr()); } template <typename T> void ReturnValue<T>::Set(double i) { static_assert(std::is_base_of<T, Number>::value, "type check"); SetNonEmpty(Number::New(GetIsolate(), i)); } template <typename T> void ReturnValue<T>::Set(int32_t i) { static_assert(std::is_base_of<T, Integer>::value, "type check"); using I = internal::Internals; if (V8_LIKELY(I::IsValidSmi(i))) { SetInternal(I::IntToSmi(i)); return; } SetNonEmpty(Integer::New(GetIsolate(), i)); } template <typename T> void ReturnValue<T>::Set(uint32_t i) { static_assert(std::is_base_of<T, Integer>::value, "type check"); // Can't simply use INT32_MAX here for whatever reason. bool fits_into_int32_t = (i & (1U << 31)) == 0; if (V8_LIKELY(fits_into_int32_t)) { Set(static_cast<int32_t>(i)); return; } SetNonEmpty(Integer::NewFromUnsigned(GetIsolate(), i)); } template <typename T> void ReturnValue<T>::Set(uint16_t i) { static_assert(std::is_base_of<T, Integer>::value, "type check"); using I = internal::Internals; static_assert(I::IsValidSmi(std::numeric_limits<uint16_t>::min())); static_assert(I::IsValidSmi(std::numeric_limits<uint16_t>::max())); SetInternal(I::IntToSmi(i)); } template <typename T> void ReturnValue<T>::Set(bool value) { static_assert(std::is_base_of<T, Boolean>::value, "type check"); using I = internal::Internals; #if V8_STATIC_ROOTS_BOOL #ifdef V8_ENABLE_CHECKS internal::PerformCastCheck( internal::ValueHelper::SlotAsValue<Value, true>(value_)); #endif // V8_ENABLE_CHECKS SetInternal(value ? I::StaticReadOnlyRoot::kTrueValue : I::StaticReadOnlyRoot::kFalseValue); #else int root_index; if (value) { root_index = I::kTrueValueRootIndex; } else { root_index = I::kFalseValueRootIndex; } *value_ = I::GetRoot(GetIsolate(), root_index); #endif // V8_STATIC_ROOTS_BOOL } template <typename T> void ReturnValue<T>::SetTheHole() { using I = internal::Internals; #if V8_STATIC_ROOTS_BOOL SetInternal(I::StaticReadOnlyRoot::kTheHoleValue); #else *value_ = I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex); #endif // V8_STATIC_ROOTS_BOOL } template <typename T> void ReturnValue<T>::SetNull() { static_assert(std::is_base_of<T, Primitive>::value, "type check"); using I = internal::Internals; #if V8_STATIC_ROOTS_BOOL #ifdef V8_ENABLE_CHECKS internal::PerformCastCheck( internal::ValueHelper::SlotAsValue<Value, true>(value_)); #endif // V8_ENABLE_CHECKS SetInternal(I::StaticReadOnlyRoot::kNullValue); #else *value_ = I::GetRoot(GetIsolate(), I::kNullValueRootIndex); #endif // V8_STATIC_ROOTS_BOOL } template <typename T> void ReturnValue<T>::SetUndefined() { static_assert(std::is_base_of<T, Primitive>::value, "type check"); using I = internal::Internals; #if V8_STATIC_ROOTS_BOOL #ifdef V8_ENABLE_CHECKS internal::PerformCastCheck( internal::ValueHelper::SlotAsValue<Value, true>(value_)); #endif // V8_ENABLE_CHECKS SetInternal(I::StaticReadOnlyRoot::kUndefinedValue); #else *value_ = I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex); #endif // V8_STATIC_ROOTS_BOOL } template <typename T> void ReturnValue<T>::SetEmptyString() { static_assert(std::is_base_of<T, String>::value, "type check"); using I = internal::Internals; #if V8_STATIC_ROOTS_BOOL #ifdef V8_ENABLE_CHECKS internal::PerformCastCheck( internal::ValueHelper::SlotAsValue<Value, true>(value_)); #endif // V8_ENABLE_CHECKS SetInternal(I::StaticReadOnlyRoot::kEmptyString); #else *value_ = I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex); #endif // V8_STATIC_ROOTS_BOOL } template <typename T> Isolate* ReturnValue<T>::GetIsolate() const { return *reinterpret_cast<Isolate**>(&value_[kIsolateValueIndex]); } template <typename T> Local<Value> ReturnValue<T>::Get() const { using I = internal::Internals; #if V8_STATIC_ROOTS_BOOL if (I::is_identical(*value_, I::StaticReadOnlyRoot::kTheHoleValue)) { #else if (*value_ == I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex)) { #endif // V8_STATIC_ROOTS_BOOL return Undefined(GetIsolate()); } return Local<Value>::New(GetIsolate(), internal::ValueHelper::SlotAsValue<Value>(value_)); } template <typename T> template <typename S> void ReturnValue<T>::Set(S* whatever) { static_assert(sizeof(S) < 0, "incompilable to prevent inadvertent misuse"); } template <typename T> FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Address* implicit_args, internal::Address* values, int length) : implicit_args_(implicit_args), values_(values), length_(length) {} template <typename T> Local<Value> FunctionCallbackInfo<T>::operator[](int i) const { // values_ points to the first argument (not the receiver). if (i < 0 || length_ <= i) return Undefined(GetIsolate()); return Local<Value>::FromSlot(values_ + i); } template <typename T> Local<Object> FunctionCallbackInfo<T>::This() const { // values_ points to the first argument (not the receiver). return Local<Object>::FromSlot(values_ + kThisValuesIndex); } template <typename T> Local<Object> FunctionCallbackInfo<T>::Holder() const { return Local<Object>::FromSlot(&implicit_args_[kHolderIndex]); } template <typename T> Local<Value> FunctionCallbackInfo<T>::NewTarget() const { return Local<Value>::FromSlot(&implicit_args_[kNewTargetIndex]); } template <typename T> Local<Value> FunctionCallbackInfo<T>::Data() const { return Local<Value>::FromSlot(&implicit_args_[kDataIndex]); } template <typename T> Isolate* FunctionCallbackInfo<T>::GetIsolate() const { return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]); } template <typename T> ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const { return ReturnValue<T>(&implicit_args_[kReturnValueIndex]); } template <typename T> bool FunctionCallbackInfo<T>::IsConstructCall() const { return !NewTarget()->IsUndefined(); } template <typename T> int FunctionCallbackInfo<T>::Length() const { return length_; } template <typename T> Isolate* PropertyCallbackInfo<T>::GetIsolate() const { return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]); } template <typename T> Local<Value> PropertyCallbackInfo<T>::Data() const { return Local<Value>::FromSlot(&args_[kDataIndex]); } template <typename T> Local<Object> PropertyCallbackInfo<T>::This() const { return Local<Object>::FromSlot(&args_[kThisIndex]); } template <typename T> Local<Object> PropertyCallbackInfo<T>::Holder() const { return Local<Object>::FromSlot(&args_[kHolderIndex]); } template <typename T> ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const { return ReturnValue<T>(&args_[kReturnValueIndex]); } template <typename T> bool PropertyCallbackInfo<T>::ShouldThrowOnError() const { using I = internal::Internals; if (args_[kShouldThrowOnErrorIndex] != I::IntToSmi(I::kInferShouldThrowMode)) { return args_[kShouldThrowOnErrorIndex] != I::IntToSmi(I::kDontThrow); } return v8::internal::ShouldThrowOnError( reinterpret_cast<v8::internal::Isolate*>(GetIsolate())); } } // namespace v8 #endif // INCLUDE_V8_FUNCTION_CALLBACK_H_