shell bypass 403
UnknownSec Shell
:
/
opt
/
cloudlinux
/
venv
/
lib
/
python3.11
/
site-packages
/
numpy
/
core
/
tests
/ [
drwxr-xr-x
]
upload
mass deface
mass delete
console
info server
name :
test_regression.py
import copy import sys import gc import tempfile import pytest from os import path from io import BytesIO from itertools import chain import numpy as np from numpy.testing import ( assert_, assert_equal, IS_PYPY, assert_almost_equal, assert_array_equal, assert_array_almost_equal, assert_raises, assert_raises_regex, assert_warns, suppress_warnings, _assert_valid_refcount, HAS_REFCOUNT, IS_PYSTON, IS_WASM ) from numpy.testing._private.utils import _no_tracing, requires_memory from numpy.compat import asbytes, asunicode, pickle class TestRegression: def test_invalid_round(self): # Ticket #3 v = 4.7599999999999998 assert_array_equal(np.array([v]), np.array(v)) def test_mem_empty(self): # Ticket #7 np.empty((1,), dtype=[('x', np.int64)]) def test_pickle_transposed(self): # Ticket #16 a = np.transpose(np.array([[2, 9], [7, 0], [3, 8]])) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): with BytesIO() as f: pickle.dump(a, f, protocol=proto) f.seek(0) b = pickle.load(f) assert_array_equal(a, b) def test_dtype_names(self): # Ticket #35 # Should succeed np.dtype([(('name', 'label'), np.int32, 3)]) def test_reduce(self): # Ticket #40 assert_almost_equal(np.add.reduce([1., .5], dtype=None), 1.5) def test_zeros_order(self): # Ticket #43 np.zeros([3], int, 'C') np.zeros([3], order='C') np.zeros([3], int, order='C') def test_asarray_with_order(self): # Check that nothing is done when order='F' and array C/F-contiguous a = np.ones(2) assert_(a is np.asarray(a, order='F')) def test_ravel_with_order(self): # Check that ravel works when order='F' and array C/F-contiguous a = np.ones(2) assert_(not a.ravel('F').flags.owndata) def test_sort_bigendian(self): # Ticket #47 a = np.linspace(0, 10, 11) c = a.astype(np.dtype('<f8')) c.sort() assert_array_almost_equal(c, a) def test_negative_nd_indexing(self): # Ticket #49 c = np.arange(125).reshape((5, 5, 5)) origidx = np.array([-1, 0, 1]) idx = np.array(origidx) c[idx] assert_array_equal(idx, origidx) def test_char_dump(self): # Ticket #50 ca = np.char.array(np.arange(1000, 1010), itemsize=4) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): with BytesIO() as f: pickle.dump(ca, f, protocol=proto) f.seek(0) ca = np.load(f, allow_pickle=True) def test_noncontiguous_fill(self): # Ticket #58. a = np.zeros((5, 3)) b = a[:, :2,] def rs(): b.shape = (10,) assert_raises(AttributeError, rs) def test_bool(self): # Ticket #60 np.bool_(1) # Should succeed def test_indexing1(self): # Ticket #64 descr = [('x', [('y', [('z', 'c16', (2,)),]),]),] buffer = ((([6j, 4j],),),) h = np.array(buffer, dtype=descr) h['x']['y']['z'] def test_indexing2(self): # Ticket #65 descr = [('x', 'i4', (2,))] buffer = ([3, 2],) h = np.array(buffer, dtype=descr) h['x'] def test_round(self): # Ticket #67 x = np.array([1+2j]) assert_almost_equal(x**(-1), [1/(1+2j)]) def test_scalar_compare(self): # Trac Ticket #72 # https://github.com/numpy/numpy/issues/565 a = np.array(['test', 'auto']) assert_array_equal(a == 'auto', np.array([False, True])) assert_(a[1] == 'auto') assert_(a[0] != 'auto') b = np.linspace(0, 10, 11) assert_array_equal(b != 'auto', np.ones(11, dtype=bool)) assert_(b[0] != 'auto') def test_unicode_swapping(self): # Ticket #79 ulen = 1 ucs_value = '\U0010FFFF' ua = np.array([[[ucs_value*ulen]*2]*3]*4, dtype='U%s' % ulen) ua.newbyteorder() # Should succeed. def test_object_array_fill(self): # Ticket #86 x = np.zeros(1, 'O') x.fill([]) def test_mem_dtype_align(self): # Ticket #93 assert_raises(TypeError, np.dtype, {'names':['a'], 'formats':['foo']}, align=1) def test_endian_bool_indexing(self): # Ticket #105 a = np.arange(10., dtype='>f8') b = np.arange(10., dtype='<f8') xa = np.where((a > 2) & (a < 6)) xb = np.where((b > 2) & (b < 6)) ya = ((a > 2) & (a < 6)) yb = ((b > 2) & (b < 6)) assert_array_almost_equal(xa, ya.nonzero()) assert_array_almost_equal(xb, yb.nonzero()) assert_(np.all(a[ya] > 0.5)) assert_(np.all(b[yb] > 0.5)) def test_endian_where(self): # GitHub issue #369 net = np.zeros(3, dtype='>f4') net[1] = 0.00458849 net[2] = 0.605202 max_net = net.max() test = np.where(net <= 0., max_net, net) correct = np.array([ 0.60520202, 0.00458849, 0.60520202]) assert_array_almost_equal(test, correct) def test_endian_recarray(self): # Ticket #2185 dt = np.dtype([ ('head', '>u4'), ('data', '>u4', 2), ]) buf = np.recarray(1, dtype=dt) buf[0]['head'] = 1 buf[0]['data'][:] = [1, 1] h = buf[0]['head'] d = buf[0]['data'][0] buf[0]['head'] = h buf[0]['data'][0] = d assert_(buf[0]['head'] == 1) def test_mem_dot(self): # Ticket #106 x = np.random.randn(0, 1) y = np.random.randn(10, 1) # Dummy array to detect bad memory access: _z = np.ones(10) _dummy = np.empty((0, 10)) z = np.lib.stride_tricks.as_strided(_z, _dummy.shape, _dummy.strides) np.dot(x, np.transpose(y), out=z) assert_equal(_z, np.ones(10)) # Do the same for the built-in dot: np.core.multiarray.dot(x, np.transpose(y), out=z) assert_equal(_z, np.ones(10)) def test_arange_endian(self): # Ticket #111 ref = np.arange(10) x = np.arange(10, dtype='<f8') assert_array_equal(ref, x) x = np.arange(10, dtype='>f8') assert_array_equal(ref, x) def test_arange_inf_step(self): ref = np.arange(0, 1, 10) x = np.arange(0, 1, np.inf) assert_array_equal(ref, x) ref = np.arange(0, 1, -10) x = np.arange(0, 1, -np.inf) assert_array_equal(ref, x) ref = np.arange(0, -1, -10) x = np.arange(0, -1, -np.inf) assert_array_equal(ref, x) ref = np.arange(0, -1, 10) x = np.arange(0, -1, np.inf) assert_array_equal(ref, x) def test_arange_underflow_stop_and_step(self): finfo = np.finfo(np.float64) ref = np.arange(0, finfo.eps, 2 * finfo.eps) x = np.arange(0, finfo.eps, finfo.max) assert_array_equal(ref, x) ref = np.arange(0, finfo.eps, -2 * finfo.eps) x = np.arange(0, finfo.eps, -finfo.max) assert_array_equal(ref, x) ref = np.arange(0, -finfo.eps, -2 * finfo.eps) x = np.arange(0, -finfo.eps, -finfo.max) assert_array_equal(ref, x) ref = np.arange(0, -finfo.eps, 2 * finfo.eps) x = np.arange(0, -finfo.eps, finfo.max) assert_array_equal(ref, x) def test_argmax(self): # Ticket #119 a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): a.argmax(i) # Should succeed def test_mem_divmod(self): # Ticket #126 for i in range(10): divmod(np.array([i])[0], 10) def test_hstack_invalid_dims(self): # Ticket #128 x = np.arange(9).reshape((3, 3)) y = np.array([0, 0, 0]) assert_raises(ValueError, np.hstack, (x, y)) def test_squeeze_type(self): # Ticket #133 a = np.array([3]) b = np.array(3) assert_(type(a.squeeze()) is np.ndarray) assert_(type(b.squeeze()) is np.ndarray) def test_add_identity(self): # Ticket #143 assert_equal(0, np.add.identity) def test_numpy_float_python_long_addition(self): # Check that numpy float and python longs can be added correctly. a = np.float_(23.) + 2**135 assert_equal(a, 23. + 2**135) def test_binary_repr_0(self): # Ticket #151 assert_equal('0', np.binary_repr(0)) def test_rec_iterate(self): # Ticket #160 descr = np.dtype([('i', int), ('f', float), ('s', '|S3')]) x = np.rec.array([(1, 1.1, '1.0'), (2, 2.2, '2.0')], dtype=descr) x[0].tolist() [i for i in x[0]] def test_unicode_string_comparison(self): # Ticket #190 a = np.array('hello', np.str_) b = np.array('world') a == b def test_tobytes_FORTRANORDER_discontiguous(self): # Fix in r2836 # Create non-contiguous Fortran ordered array x = np.array(np.random.rand(3, 3), order='F')[:, :2] assert_array_almost_equal(x.ravel(), np.frombuffer(x.tobytes())) def test_flat_assignment(self): # Correct behaviour of ticket #194 x = np.empty((3, 1)) x.flat = np.arange(3) assert_array_almost_equal(x, [[0], [1], [2]]) x.flat = np.arange(3, dtype=float) assert_array_almost_equal(x, [[0], [1], [2]]) def test_broadcast_flat_assignment(self): # Ticket #194 x = np.empty((3, 1)) def bfa(): x[:] = np.arange(3) def bfb(): x[:] = np.arange(3, dtype=float) assert_raises(ValueError, bfa) assert_raises(ValueError, bfb) @pytest.mark.xfail(IS_WASM, reason="not sure why") @pytest.mark.parametrize("index", [np.ones(10, dtype=bool), np.arange(10)], ids=["boolean-arr-index", "integer-arr-index"]) def test_nonarray_assignment(self, index): # See also Issue gh-2870, test for non-array assignment # and equivalent unsafe casted array assignment a = np.arange(10) with pytest.raises(ValueError): a[index] = np.nan with np.errstate(invalid="warn"): with pytest.warns(RuntimeWarning, match="invalid value"): a[index] = np.array(np.nan) # Only warns def test_unpickle_dtype_with_object(self): # Implemented in r2840 dt = np.dtype([('x', int), ('y', np.object_), ('z', 'O')]) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): with BytesIO() as f: pickle.dump(dt, f, protocol=proto) f.seek(0) dt_ = pickle.load(f) assert_equal(dt, dt_) def test_mem_array_creation_invalid_specification(self): # Ticket #196 dt = np.dtype([('x', int), ('y', np.object_)]) # Wrong way assert_raises(ValueError, np.array, [1, 'object'], dt) # Correct way np.array([(1, 'object')], dt) def test_recarray_single_element(self): # Ticket #202 a = np.array([1, 2, 3], dtype=np.int32) b = a.copy() r = np.rec.array(a, shape=1, formats=['3i4'], names=['d']) assert_array_equal(a, b) assert_equal(a, r[0][0]) def test_zero_sized_array_indexing(self): # Ticket #205 tmp = np.array([]) def index_tmp(): tmp[np.array(10)] assert_raises(IndexError, index_tmp) def test_chararray_rstrip(self): # Ticket #222 x = np.chararray((1,), 5) x[0] = b'a ' x = x.rstrip() assert_equal(x[0], b'a') def test_object_array_shape(self): # Ticket #239 assert_equal(np.array([[1, 2], 3, 4], dtype=object).shape, (3,)) assert_equal(np.array([[1, 2], [3, 4]], dtype=object).shape, (2, 2)) assert_equal(np.array([(1, 2), (3, 4)], dtype=object).shape, (2, 2)) assert_equal(np.array([], dtype=object).shape, (0,)) assert_equal(np.array([[], [], []], dtype=object).shape, (3, 0)) assert_equal(np.array([[3, 4], [5, 6], None], dtype=object).shape, (3,)) def test_mem_around(self): # Ticket #243 x = np.zeros((1,)) y = [0] decimal = 6 np.around(abs(x-y), decimal) <= 10.0**(-decimal) def test_character_array_strip(self): # Ticket #246 x = np.char.array(("x", "x ", "x ")) for c in x: assert_equal(c, "x") def test_lexsort(self): # Lexsort memory error v = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) assert_equal(np.lexsort(v), 0) def test_lexsort_invalid_sequence(self): # Issue gh-4123 class BuggySequence: def __len__(self): return 4 def __getitem__(self, key): raise KeyError assert_raises(KeyError, np.lexsort, BuggySequence()) def test_lexsort_zerolen_custom_strides(self): # Ticket #14228 xs = np.array([], dtype='i8') assert np.lexsort((xs,)).shape[0] == 0 # Works xs.strides = (16,) assert np.lexsort((xs,)).shape[0] == 0 # Was: MemoryError def test_lexsort_zerolen_custom_strides_2d(self): xs = np.array([], dtype='i8') xs.shape = (0, 2) xs.strides = (16, 16) assert np.lexsort((xs,), axis=0).shape[0] == 0 xs.shape = (2, 0) xs.strides = (16, 16) assert np.lexsort((xs,), axis=0).shape[0] == 2 def test_lexsort_invalid_axis(self): assert_raises(np.AxisError, np.lexsort, (np.arange(1),), axis=2) assert_raises(np.AxisError, np.lexsort, (np.array([]),), axis=1) assert_raises(np.AxisError, np.lexsort, (np.array(1),), axis=10) def test_lexsort_zerolen_element(self): dt = np.dtype([]) # a void dtype with no fields xs = np.empty(4, dt) assert np.lexsort((xs,)).shape[0] == xs.shape[0] def test_pickle_py2_bytes_encoding(self): # Check that arrays and scalars pickled on Py2 are # unpickleable on Py3 using encoding='bytes' test_data = [ # (original, py2_pickle) (np.str_('\u6f2c'), b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n" b"(S'U1'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI4\nI4\n" b"I0\ntp6\nbS',o\\x00\\x00'\np7\ntp8\nRp9\n."), (np.array([9e123], dtype=np.float64), b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\n" b"p1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\n" b"p7\n(S'f8'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'<'\np11\nNNNI-1\nI-1\n" b"I0\ntp12\nbI00\nS'O\\x81\\xb7Z\\xaa:\\xabY'\np13\ntp14\nb."), (np.array([(9e123,)], dtype=[('name', float)]), b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n" b"(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n" b"(S'V8'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'name'\np12\ntp13\n" b"(dp14\ng12\n(g7\n(S'f8'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'<'\np18\nNNNI-1\n" b"I-1\nI0\ntp19\nbI0\ntp20\nsI8\nI1\nI0\ntp21\n" b"bI00\nS'O\\x81\\xb7Z\\xaa:\\xabY'\np22\ntp23\nb."), ] for original, data in test_data: result = pickle.loads(data, encoding='bytes') assert_equal(result, original) if isinstance(result, np.ndarray) and result.dtype.names is not None: for name in result.dtype.names: assert_(isinstance(name, str)) def test_pickle_dtype(self): # Ticket #251 for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): pickle.dumps(float, protocol=proto) def test_swap_real(self): # Ticket #265 assert_equal(np.arange(4, dtype='>c8').imag.max(), 0.0) assert_equal(np.arange(4, dtype='<c8').imag.max(), 0.0) assert_equal(np.arange(4, dtype='>c8').real.max(), 3.0) assert_equal(np.arange(4, dtype='<c8').real.max(), 3.0) def test_object_array_from_list(self): # Ticket #270 (gh-868) assert_(np.array([1, None, 'A']).shape == (3,)) def test_multiple_assign(self): # Ticket #273 a = np.zeros((3, 1), int) a[[1, 2]] = 1 def test_empty_array_type(self): assert_equal(np.array([]).dtype, np.zeros(0).dtype) def test_void_copyswap(self): dt = np.dtype([('one', '<i4'), ('two', '<i4')]) x = np.array((1, 2), dtype=dt) x = x.byteswap() assert_(x['one'] > 1 and x['two'] > 2) def test_method_args(self): # Make sure methods and functions have same default axis # keyword and arguments funcs1 = ['argmax', 'argmin', 'sum', 'any', 'all', 'cumsum', 'ptp', 'cumprod', 'prod', 'std', 'var', 'mean', 'round', 'min', 'max', 'argsort', 'sort'] funcs2 = ['compress', 'take', 'repeat'] for func in funcs1: arr = np.random.rand(8, 7) arr2 = arr.copy() res1 = getattr(arr, func)() res2 = getattr(np, func)(arr2) if res1 is None: res1 = arr if res1.dtype.kind in 'uib': assert_((res1 == res2).all(), func) else: assert_(abs(res1-res2).max() < 1e-8, func) for func in funcs2: arr1 = np.random.rand(8, 7) arr2 = np.random.rand(8, 7) res1 = None if func == 'compress': arr1 = arr1.ravel() res1 = getattr(arr2, func)(arr1) else: arr2 = (15*arr2).astype(int).ravel() if res1 is None: res1 = getattr(arr1, func)(arr2) res2 = getattr(np, func)(arr1, arr2) assert_(abs(res1-res2).max() < 1e-8, func) def test_mem_lexsort_strings(self): # Ticket #298 lst = ['abc', 'cde', 'fgh'] np.lexsort((lst,)) def test_fancy_index(self): # Ticket #302 x = np.array([1, 2])[np.array([0])] assert_equal(x.shape, (1,)) def test_recarray_copy(self): # Ticket #312 dt = [('x', np.int16), ('y', np.float64)] ra = np.array([(1, 2.3)], dtype=dt) rb = np.rec.array(ra, dtype=dt) rb['x'] = 2. assert_(ra['x'] != rb['x']) def test_rec_fromarray(self): # Ticket #322 x1 = np.array([[1, 2], [3, 4], [5, 6]]) x2 = np.array(['a', 'dd', 'xyz']) x3 = np.array([1.1, 2, 3]) np.rec.fromarrays([x1, x2, x3], formats="(2,)i4,a3,f8") def test_object_array_assign(self): x = np.empty((2, 2), object) x.flat[2] = (1, 2, 3) assert_equal(x.flat[2], (1, 2, 3)) def test_ndmin_float64(self): # Ticket #324 x = np.array([1, 2, 3], dtype=np.float64) assert_equal(np.array(x, dtype=np.float32, ndmin=2).ndim, 2) assert_equal(np.array(x, dtype=np.float64, ndmin=2).ndim, 2) def test_ndmin_order(self): # Issue #465 and related checks assert_(np.array([1, 2], order='C', ndmin=3).flags.c_contiguous) assert_(np.array([1, 2], order='F', ndmin=3).flags.f_contiguous) assert_(np.array(np.ones((2, 2), order='F'), ndmin=3).flags.f_contiguous) assert_(np.array(np.ones((2, 2), order='C'), ndmin=3).flags.c_contiguous) def test_mem_axis_minimization(self): # Ticket #327 data = np.arange(5) data = np.add.outer(data, data) def test_mem_float_imag(self): # Ticket #330 np.float64(1.0).imag def test_dtype_tuple(self): # Ticket #334 assert_(np.dtype('i4') == np.dtype(('i4', ()))) def test_dtype_posttuple(self): # Ticket #335 np.dtype([('col1', '()i4')]) def test_numeric_carray_compare(self): # Ticket #341 assert_equal(np.array(['X'], 'c'), b'X') def test_string_array_size(self): # Ticket #342 assert_raises(ValueError, np.array, [['X'], ['X', 'X', 'X']], '|S1') def test_dtype_repr(self): # Ticket #344 dt1 = np.dtype(('uint32', 2)) dt2 = np.dtype(('uint32', (2,))) assert_equal(dt1.__repr__(), dt2.__repr__()) def test_reshape_order(self): # Make sure reshape order works. a = np.arange(6).reshape(2, 3, order='F') assert_equal(a, [[0, 2, 4], [1, 3, 5]]) a = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) b = a[:, 1] assert_equal(b.reshape(2, 2, order='F'), [[2, 6], [4, 8]]) def test_reshape_zero_strides(self): # Issue #380, test reshaping of zero strided arrays a = np.ones(1) a = np.lib.stride_tricks.as_strided(a, shape=(5,), strides=(0,)) assert_(a.reshape(5, 1).strides[0] == 0) def test_reshape_zero_size(self): # GitHub Issue #2700, setting shape failed for 0-sized arrays a = np.ones((0, 2)) a.shape = (-1, 2) # Cannot test if NPY_RELAXED_STRIDES_DEBUG changes the strides. # With NPY_RELAXED_STRIDES_DEBUG the test becomes superfluous. @pytest.mark.skipif(np.ones(1).strides[0] == np.iinfo(np.intp).max, reason="Using relaxed stride debug") def test_reshape_trailing_ones_strides(self): # GitHub issue gh-2949, bad strides for trailing ones of new shape a = np.zeros(12, dtype=np.int32)[::2] # not contiguous strides_c = (16, 8, 8, 8) strides_f = (8, 24, 48, 48) assert_equal(a.reshape(3, 2, 1, 1).strides, strides_c) assert_equal(a.reshape(3, 2, 1, 1, order='F').strides, strides_f) assert_equal(np.array(0, dtype=np.int32).reshape(1, 1).strides, (4, 4)) def test_repeat_discont(self): # Ticket #352 a = np.arange(12).reshape(4, 3)[:, 2] assert_equal(a.repeat(3), [2, 2, 2, 5, 5, 5, 8, 8, 8, 11, 11, 11]) def test_array_index(self): # Make sure optimization is not called in this case. a = np.array([1, 2, 3]) a2 = np.array([[1, 2, 3]]) assert_equal(a[np.where(a == 3)], a2[np.where(a2 == 3)]) def test_object_argmax(self): a = np.array([1, 2, 3], dtype=object) assert_(a.argmax() == 2) def test_recarray_fields(self): # Ticket #372 dt0 = np.dtype([('f0', 'i4'), ('f1', 'i4')]) dt1 = np.dtype([('f0', 'i8'), ('f1', 'i8')]) for a in [np.array([(1, 2), (3, 4)], "i4,i4"), np.rec.array([(1, 2), (3, 4)], "i4,i4"), np.rec.array([(1, 2), (3, 4)]), np.rec.fromarrays([(1, 2), (3, 4)], "i4,i4"), np.rec.fromarrays([(1, 2), (3, 4)])]: assert_(a.dtype in [dt0, dt1]) def test_random_shuffle(self): # Ticket #374 a = np.arange(5).reshape((5, 1)) b = a.copy() np.random.shuffle(b) assert_equal(np.sort(b, axis=0), a) def test_refcount_vdot(self): # Changeset #3443 _assert_valid_refcount(np.vdot) def test_startswith(self): ca = np.char.array(['Hi', 'There']) assert_equal(ca.startswith('H'), [True, False]) def test_noncommutative_reduce_accumulate(self): # Ticket #413 tosubtract = np.arange(5) todivide = np.array([2.0, 0.5, 0.25]) assert_equal(np.subtract.reduce(tosubtract), -10) assert_equal(np.divide.reduce(todivide), 16.0) assert_array_equal(np.subtract.accumulate(tosubtract), np.array([0, -1, -3, -6, -10])) assert_array_equal(np.divide.accumulate(todivide), np.array([2., 4., 16.])) def test_convolve_empty(self): # Convolve should raise an error for empty input array. assert_raises(ValueError, np.convolve, [], [1]) assert_raises(ValueError, np.convolve, [1], []) def test_multidim_byteswap(self): # Ticket #449 r = np.array([(1, (0, 1, 2))], dtype="i2,3i2") assert_array_equal(r.byteswap(), np.array([(256, (0, 256, 512))], r.dtype)) def test_string_NULL(self): # Changeset 3557 assert_equal(np.array("a\x00\x0b\x0c\x00").item(), 'a\x00\x0b\x0c') def test_junk_in_string_fields_of_recarray(self): # Ticket #483 r = np.array([[b'abc']], dtype=[('var1', '|S20')]) assert_(asbytes(r['var1'][0][0]) == b'abc') def test_take_output(self): # Ensure that 'take' honours output parameter. x = np.arange(12).reshape((3, 4)) a = np.take(x, [0, 2], axis=1) b = np.zeros_like(a) np.take(x, [0, 2], axis=1, out=b) assert_array_equal(a, b) def test_take_object_fail(self): # Issue gh-3001 d = 123. a = np.array([d, 1], dtype=object) if HAS_REFCOUNT: ref_d = sys.getrefcount(d) try: a.take([0, 100]) except IndexError: pass if HAS_REFCOUNT: assert_(ref_d == sys.getrefcount(d)) def test_array_str_64bit(self): # Ticket #501 s = np.array([1, np.nan], dtype=np.float64) with np.errstate(all='raise'): np.array_str(s) # Should succeed def test_frompyfunc_endian(self): # Ticket #503 from math import radians uradians = np.frompyfunc(radians, 1, 1) big_endian = np.array([83.4, 83.5], dtype='>f8') little_endian = np.array([83.4, 83.5], dtype='<f8') assert_almost_equal(uradians(big_endian).astype(float), uradians(little_endian).astype(float)) def test_mem_string_arr(self): # Ticket #514 s = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" t = [] np.hstack((t, s)) def test_arr_transpose(self): # Ticket #516 x = np.random.rand(*(2,)*16) x.transpose(list(range(16))) # Should succeed def test_string_mergesort(self): # Ticket #540 x = np.array(['a']*32) assert_array_equal(x.argsort(kind='m'), np.arange(32)) def test_argmax_byteorder(self): # Ticket #546 a = np.arange(3, dtype='>f') assert_(a[a.argmax()] == a.max()) def test_rand_seed(self): # Ticket #555 for l in np.arange(4): np.random.seed(l) def test_mem_deallocation_leak(self): # Ticket #562 a = np.zeros(5, dtype=float) b = np.array(a, dtype=float) del a, b def test_mem_on_invalid_dtype(self): "Ticket #583" assert_raises(ValueError, np.fromiter, [['12', ''], ['13', '']], str) def test_dot_negative_stride(self): # Ticket #588 x = np.array([[1, 5, 25, 125., 625]]) y = np.array([[20.], [160.], [640.], [1280.], [1024.]]) z = y[::-1].copy() y2 = y[::-1] assert_equal(np.dot(x, z), np.dot(x, y2)) def test_object_casting(self): # This used to trigger the object-type version of # the bitwise_or operation, because float64 -> object # casting succeeds def rs(): x = np.ones([484, 286]) y = np.zeros([484, 286]) x |= y assert_raises(TypeError, rs) def test_unicode_scalar(self): # Ticket #600 x = np.array(["DROND", "DROND1"], dtype="U6") el = x[1] for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): new = pickle.loads(pickle.dumps(el, protocol=proto)) assert_equal(new, el) def test_arange_non_native_dtype(self): # Ticket #616 for T in ('>f4', '<f4'): dt = np.dtype(T) assert_equal(np.arange(0, dtype=dt).dtype, dt) assert_equal(np.arange(0.5, dtype=dt).dtype, dt) assert_equal(np.arange(5, dtype=dt).dtype, dt) def test_bool_flat_indexing_invalid_nr_elements(self): s = np.ones(10, dtype=float) x = np.array((15,), dtype=float) def ia(x, s, v): x[(s > 0)] = v assert_raises(IndexError, ia, x, s, np.zeros(9, dtype=float)) assert_raises(IndexError, ia, x, s, np.zeros(11, dtype=float)) # Old special case (different code path): assert_raises(ValueError, ia, x.flat, s, np.zeros(9, dtype=float)) assert_raises(ValueError, ia, x.flat, s, np.zeros(11, dtype=float)) def test_mem_scalar_indexing(self): # Ticket #603 x = np.array([0], dtype=float) index = np.array(0, dtype=np.int32) x[index] def test_binary_repr_0_width(self): assert_equal(np.binary_repr(0, width=3), '000') def test_fromstring(self): assert_equal(np.fromstring("12:09:09", dtype=int, sep=":"), [12, 9, 9]) def test_searchsorted_variable_length(self): x = np.array(['a', 'aa', 'b']) y = np.array(['d', 'e']) assert_equal(x.searchsorted(y), [3, 3]) def test_string_argsort_with_zeros(self): # Check argsort for strings containing zeros. x = np.frombuffer(b"\x00\x02\x00\x01", dtype="|S2") assert_array_equal(x.argsort(kind='m'), np.array([1, 0])) assert_array_equal(x.argsort(kind='q'), np.array([1, 0])) def test_string_sort_with_zeros(self): # Check sort for strings containing zeros. x = np.frombuffer(b"\x00\x02\x00\x01", dtype="|S2") y = np.frombuffer(b"\x00\x01\x00\x02", dtype="|S2") assert_array_equal(np.sort(x, kind="q"), y) def test_copy_detection_zero_dim(self): # Ticket #658 np.indices((0, 3, 4)).T.reshape(-1, 3) def test_flat_byteorder(self): # Ticket #657 x = np.arange(10) assert_array_equal(x.astype('>i4'), x.astype('<i4').flat[:]) assert_array_equal(x.astype('>i4').flat[:], x.astype('<i4')) def test_sign_bit(self): x = np.array([0, -0.0, 0]) assert_equal(str(np.abs(x)), '[0. 0. 0.]') def test_flat_index_byteswap(self): for dt in (np.dtype('<i4'), np.dtype('>i4')): x = np.array([-1, 0, 1], dtype=dt) assert_equal(x.flat[0].dtype, x[0].dtype) def test_copy_detection_corner_case(self): # Ticket #658 np.indices((0, 3, 4)).T.reshape(-1, 3) # Cannot test if NPY_RELAXED_STRIDES_DEBUG changes the strides. # With NPY_RELAXED_STRIDES_DEBUG the test becomes superfluous, # 0-sized reshape itself is tested elsewhere. @pytest.mark.skipif(np.ones(1).strides[0] == np.iinfo(np.intp).max, reason="Using relaxed stride debug") def test_copy_detection_corner_case2(self): # Ticket #771: strides are not set correctly when reshaping 0-sized # arrays b = np.indices((0, 3, 4)).T.reshape(-1, 3) assert_equal(b.strides, (3 * b.itemsize, b.itemsize)) def test_object_array_refcounting(self): # Ticket #633 if not hasattr(sys, 'getrefcount'): return # NB. this is probably CPython-specific cnt = sys.getrefcount a = object() b = object() c = object() cnt0_a = cnt(a) cnt0_b = cnt(b) cnt0_c = cnt(c) # -- 0d -> 1-d broadcast slice assignment arr = np.zeros(5, dtype=np.object_) arr[:] = a assert_equal(cnt(a), cnt0_a + 5) arr[:] = b assert_equal(cnt(a), cnt0_a) assert_equal(cnt(b), cnt0_b + 5) arr[:2] = c assert_equal(cnt(b), cnt0_b + 3) assert_equal(cnt(c), cnt0_c + 2) del arr # -- 1-d -> 2-d broadcast slice assignment arr = np.zeros((5, 2), dtype=np.object_) arr0 = np.zeros(2, dtype=np.object_) arr0[0] = a assert_(cnt(a) == cnt0_a + 1) arr0[1] = b assert_(cnt(b) == cnt0_b + 1) arr[:, :] = arr0 assert_(cnt(a) == cnt0_a + 6) assert_(cnt(b) == cnt0_b + 6) arr[:, 0] = None assert_(cnt(a) == cnt0_a + 1) del arr, arr0 # -- 2-d copying + flattening arr = np.zeros((5, 2), dtype=np.object_) arr[:, 0] = a arr[:, 1] = b assert_(cnt(a) == cnt0_a + 5) assert_(cnt(b) == cnt0_b + 5) arr2 = arr.copy() assert_(cnt(a) == cnt0_a + 10) assert_(cnt(b) == cnt0_b + 10) arr2 = arr[:, 0].copy() assert_(cnt(a) == cnt0_a + 10) assert_(cnt(b) == cnt0_b + 5) arr2 = arr.flatten() assert_(cnt(a) == cnt0_a + 10) assert_(cnt(b) == cnt0_b + 10) del arr, arr2 # -- concatenate, repeat, take, choose arr1 = np.zeros((5, 1), dtype=np.object_) arr2 = np.zeros((5, 1), dtype=np.object_) arr1[...] = a arr2[...] = b assert_(cnt(a) == cnt0_a + 5) assert_(cnt(b) == cnt0_b + 5) tmp = np.concatenate((arr1, arr2)) assert_(cnt(a) == cnt0_a + 5 + 5) assert_(cnt(b) == cnt0_b + 5 + 5) tmp = arr1.repeat(3, axis=0) assert_(cnt(a) == cnt0_a + 5 + 3*5) tmp = arr1.take([1, 2, 3], axis=0) assert_(cnt(a) == cnt0_a + 5 + 3) x = np.array([[0], [1], [0], [1], [1]], int) tmp = x.choose(arr1, arr2) assert_(cnt(a) == cnt0_a + 5 + 2) assert_(cnt(b) == cnt0_b + 5 + 3) del tmp # Avoid pyflakes unused variable warning def test_mem_custom_float_to_array(self): # Ticket 702 class MyFloat: def __float__(self): return 1.0 tmp = np.atleast_1d([MyFloat()]) tmp.astype(float) # Should succeed def test_object_array_refcount_self_assign(self): # Ticket #711 class VictimObject: deleted = False def __del__(self): self.deleted = True d = VictimObject() arr = np.zeros(5, dtype=np.object_) arr[:] = d del d arr[:] = arr # refcount of 'd' might hit zero here assert_(not arr[0].deleted) arr[:] = arr # trying to induce a segfault by doing it again... assert_(not arr[0].deleted) def test_mem_fromiter_invalid_dtype_string(self): x = [1, 2, 3] assert_raises(ValueError, np.fromiter, [xi for xi in x], dtype='S') def test_reduce_big_object_array(self): # Ticket #713 oldsize = np.setbufsize(10*16) a = np.array([None]*161, object) assert_(not np.any(a)) np.setbufsize(oldsize) def test_mem_0d_array_index(self): # Ticket #714 np.zeros(10)[np.array(0)] def test_nonnative_endian_fill(self): # Non-native endian arrays were incorrectly filled with scalars # before r5034. if sys.byteorder == 'little': dtype = np.dtype('>i4') else: dtype = np.dtype('<i4') x = np.empty([1], dtype=dtype) x.fill(1) assert_equal(x, np.array([1], dtype=dtype)) def test_dot_alignment_sse2(self): # Test for ticket #551, changeset r5140 x = np.zeros((30, 40)) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): y = pickle.loads(pickle.dumps(x, protocol=proto)) # y is now typically not aligned on a 8-byte boundary z = np.ones((1, y.shape[0])) # This shouldn't cause a segmentation fault: np.dot(z, y) def test_astype_copy(self): # Ticket #788, changeset r5155 # The test data file was generated by scipy.io.savemat. # The dtype is float64, but the isbuiltin attribute is 0. data_dir = path.join(path.dirname(__file__), 'data') filename = path.join(data_dir, "astype_copy.pkl") with open(filename, 'rb') as f: xp = pickle.load(f, encoding='latin1') xpd = xp.astype(np.float64) assert_((xp.__array_interface__['data'][0] != xpd.__array_interface__['data'][0])) def test_compress_small_type(self): # Ticket #789, changeset 5217. # compress with out argument segfaulted if cannot cast safely import numpy as np a = np.array([[1, 2], [3, 4]]) b = np.zeros((2, 1), dtype=np.single) try: a.compress([True, False], axis=1, out=b) raise AssertionError("compress with an out which cannot be " "safely casted should not return " "successfully") except TypeError: pass def test_attributes(self): # Ticket #791 class TestArray(np.ndarray): def __new__(cls, data, info): result = np.array(data) result = result.view(cls) result.info = info return result def __array_finalize__(self, obj): self.info = getattr(obj, 'info', '') dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba') assert_(dat.info == 'jubba') dat.resize((4, 2)) assert_(dat.info == 'jubba') dat.sort() assert_(dat.info == 'jubba') dat.fill(2) assert_(dat.info == 'jubba') dat.put([2, 3, 4], [6, 3, 4]) assert_(dat.info == 'jubba') dat.setfield(4, np.int32, 0) assert_(dat.info == 'jubba') dat.setflags() assert_(dat.info == 'jubba') assert_(dat.all(1).info == 'jubba') assert_(dat.any(1).info == 'jubba') assert_(dat.argmax(1).info == 'jubba') assert_(dat.argmin(1).info == 'jubba') assert_(dat.argsort(1).info == 'jubba') assert_(dat.astype(TestArray).info == 'jubba') assert_(dat.byteswap().info == 'jubba') assert_(dat.clip(2, 7).info == 'jubba') assert_(dat.compress([0, 1, 1]).info == 'jubba') assert_(dat.conj().info == 'jubba') assert_(dat.conjugate().info == 'jubba') assert_(dat.copy().info == 'jubba') dat2 = TestArray([2, 3, 1, 0], 'jubba') choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] assert_(dat2.choose(choices).info == 'jubba') assert_(dat.cumprod(1).info == 'jubba') assert_(dat.cumsum(1).info == 'jubba') assert_(dat.diagonal().info == 'jubba') assert_(dat.flatten().info == 'jubba') assert_(dat.getfield(np.int32, 0).info == 'jubba') assert_(dat.imag.info == 'jubba') assert_(dat.max(1).info == 'jubba') assert_(dat.mean(1).info == 'jubba') assert_(dat.min(1).info == 'jubba') assert_(dat.newbyteorder().info == 'jubba') assert_(dat.prod(1).info == 'jubba') assert_(dat.ptp(1).info == 'jubba') assert_(dat.ravel().info == 'jubba') assert_(dat.real.info == 'jubba') assert_(dat.repeat(2).info == 'jubba') assert_(dat.reshape((2, 4)).info == 'jubba') assert_(dat.round().info == 'jubba') assert_(dat.squeeze().info == 'jubba') assert_(dat.std(1).info == 'jubba') assert_(dat.sum(1).info == 'jubba') assert_(dat.swapaxes(0, 1).info == 'jubba') assert_(dat.take([2, 3, 5]).info == 'jubba') assert_(dat.transpose().info == 'jubba') assert_(dat.T.info == 'jubba') assert_(dat.var(1).info == 'jubba') assert_(dat.view(TestArray).info == 'jubba') # These methods do not preserve subclasses assert_(type(dat.nonzero()[0]) is np.ndarray) assert_(type(dat.nonzero()[1]) is np.ndarray) def test_recarray_tolist(self): # Ticket #793, changeset r5215 # Comparisons fail for NaN, so we can't use random memory # for the test. buf = np.zeros(40, dtype=np.int8) a = np.recarray(2, formats="i4,f8,f8", names="id,x,y", buf=buf) b = a.tolist() assert_( a[0].tolist() == b[0]) assert_( a[1].tolist() == b[1]) def test_nonscalar_item_method(self): # Make sure that .item() fails graciously when it should a = np.arange(5) assert_raises(ValueError, a.item) def test_char_array_creation(self): a = np.array('123', dtype='c') b = np.array([b'1', b'2', b'3']) assert_equal(a, b) def test_unaligned_unicode_access(self): # Ticket #825 for i in range(1, 9): msg = 'unicode offset: %d chars' % i t = np.dtype([('a', 'S%d' % i), ('b', 'U2')]) x = np.array([(b'a', 'b')], dtype=t) assert_equal(str(x), "[(b'a', 'b')]", err_msg=msg) def test_sign_for_complex_nan(self): # Ticket 794. with np.errstate(invalid='ignore'): C = np.array([-np.inf, -2+1j, 0, 2-1j, np.inf, np.nan]) have = np.sign(C) want = np.array([-1+0j, -1+0j, 0+0j, 1+0j, 1+0j, np.nan]) assert_equal(have, want) def test_for_equal_names(self): # Ticket #674 dt = np.dtype([('foo', float), ('bar', float)]) a = np.zeros(10, dt) b = list(a.dtype.names) b[0] = "notfoo" a.dtype.names = b assert_(a.dtype.names[0] == "notfoo") assert_(a.dtype.names[1] == "bar") def test_for_object_scalar_creation(self): # Ticket #816 a = np.object_() b = np.object_(3) b2 = np.object_(3.0) c = np.object_([4, 5]) d = np.object_([None, {}, []]) assert_(a is None) assert_(type(b) is int) assert_(type(b2) is float) assert_(type(c) is np.ndarray) assert_(c.dtype == object) assert_(d.dtype == object) def test_array_resize_method_system_error(self): # Ticket #840 - order should be an invalid keyword. x = np.array([[0, 1], [2, 3]]) assert_raises(TypeError, x.resize, (2, 2), order='C') def test_for_zero_length_in_choose(self): "Ticket #882" a = np.array(1) assert_raises(ValueError, lambda x: x.choose([]), a) def test_array_ndmin_overflow(self): "Ticket #947." assert_raises(ValueError, lambda: np.array([1], ndmin=33)) def test_void_scalar_with_titles(self): # No ticket data = [('john', 4), ('mary', 5)] dtype1 = [(('source:yy', 'name'), 'O'), (('source:xx', 'id'), int)] arr = np.array(data, dtype=dtype1) assert_(arr[0][0] == 'john') assert_(arr[0][1] == 4) def test_void_scalar_constructor(self): #Issue #1550 #Create test string data, construct void scalar from data and assert #that void scalar contains original data. test_string = np.array("test") test_string_void_scalar = np.core.multiarray.scalar( np.dtype(("V", test_string.dtype.itemsize)), test_string.tobytes()) assert_(test_string_void_scalar.view(test_string.dtype) == test_string) #Create record scalar, construct from data and assert that #reconstructed scalar is correct. test_record = np.ones((), "i,i") test_record_void_scalar = np.core.multiarray.scalar( test_record.dtype, test_record.tobytes()) assert_(test_record_void_scalar == test_record) # Test pickle and unpickle of void and record scalars for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): assert_(pickle.loads( pickle.dumps(test_string, protocol=proto)) == test_string) assert_(pickle.loads( pickle.dumps(test_record, protocol=proto)) == test_record) @_no_tracing def test_blasdot_uninitialized_memory(self): # Ticket #950 for m in [0, 1, 2]: for n in [0, 1, 2]: for k in range(3): # Try to ensure that x->data contains non-zero floats x = np.array([123456789e199], dtype=np.float64) if IS_PYPY: x.resize((m, 0), refcheck=False) else: x.resize((m, 0)) y = np.array([123456789e199], dtype=np.float64) if IS_PYPY: y.resize((0, n), refcheck=False) else: y.resize((0, n)) # `dot` should just return zero (m, n) matrix z = np.dot(x, y) assert_(np.all(z == 0)) assert_(z.shape == (m, n)) def test_zeros(self): # Regression test for #1061. # Set a size which cannot fit into a 64 bits signed integer sz = 2 ** 64 with assert_raises_regex(ValueError, 'Maximum allowed dimension exceeded'): np.empty(sz) def test_huge_arange(self): # Regression test for #1062. # Set a size which cannot fit into a 64 bits signed integer sz = 2 ** 64 with assert_raises_regex(ValueError, 'Maximum allowed size exceeded'): np.arange(sz) assert_(np.size == sz) def test_fromiter_bytes(self): # Ticket #1058 a = np.fromiter(list(range(10)), dtype='b') b = np.fromiter(list(range(10)), dtype='B') assert_(np.all(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))) assert_(np.all(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))) def test_array_from_sequence_scalar_array(self): # Ticket #1078: segfaults when creating an array with a sequence of # 0d arrays. a = np.array((np.ones(2), np.array(2)), dtype=object) assert_equal(a.shape, (2,)) assert_equal(a.dtype, np.dtype(object)) assert_equal(a[0], np.ones(2)) assert_equal(a[1], np.array(2)) a = np.array(((1,), np.array(1)), dtype=object) assert_equal(a.shape, (2,)) assert_equal(a.dtype, np.dtype(object)) assert_equal(a[0], (1,)) assert_equal(a[1], np.array(1)) def test_array_from_sequence_scalar_array2(self): # Ticket #1081: weird array with strange input... t = np.array([np.array([]), np.array(0, object)], dtype=object) assert_equal(t.shape, (2,)) assert_equal(t.dtype, np.dtype(object)) def test_array_too_big(self): # Ticket #1080. assert_raises(ValueError, np.zeros, [975]*7, np.int8) assert_raises(ValueError, np.zeros, [26244]*5, np.int8) def test_dtype_keyerrors_(self): # Ticket #1106. dt = np.dtype([('f1', np.uint)]) assert_raises(KeyError, dt.__getitem__, "f2") assert_raises(IndexError, dt.__getitem__, 1) assert_raises(TypeError, dt.__getitem__, 0.0) def test_lexsort_buffer_length(self): # Ticket #1217, don't segfault. a = np.ones(100, dtype=np.int8) b = np.ones(100, dtype=np.int32) i = np.lexsort((a[::-1], b)) assert_equal(i, np.arange(100, dtype=int)) def test_object_array_to_fixed_string(self): # Ticket #1235. a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_) b = np.array(a, dtype=(np.str_, 8)) assert_equal(a, b) c = np.array(a, dtype=(np.str_, 5)) assert_equal(c, np.array(['abcde', 'ijklm'])) d = np.array(a, dtype=(np.str_, 12)) assert_equal(a, d) e = np.empty((2, ), dtype=(np.str_, 8)) e[:] = a[:] assert_equal(a, e) def test_unicode_to_string_cast(self): # Ticket #1240. a = np.array([['abc', '\u03a3'], ['asdf', 'erw']], dtype='U') assert_raises(UnicodeEncodeError, np.array, a, 'S4') def test_unicode_to_string_cast_error(self): # gh-15790 a = np.array(['\x80'] * 129, dtype='U3') assert_raises(UnicodeEncodeError, np.array, a, 'S') b = a.reshape(3, 43)[:-1, :-1] assert_raises(UnicodeEncodeError, np.array, b, 'S') def test_mixed_string_byte_array_creation(self): a = np.array(['1234', b'123']) assert_(a.itemsize == 16) a = np.array([b'123', '1234']) assert_(a.itemsize == 16) a = np.array(['1234', b'123', '12345']) assert_(a.itemsize == 20) a = np.array([b'123', '1234', b'12345']) assert_(a.itemsize == 20) a = np.array([b'123', '1234', b'1234']) assert_(a.itemsize == 16) def test_misaligned_objects_segfault(self): # Ticket #1198 and #1267 a1 = np.zeros((10,), dtype='O,c') a2 = np.array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'], 'S10') a1['f0'] = a2 repr(a1) np.argmax(a1['f0']) a1['f0'][1] = "FOO" a1['f0'] = "FOO" np.array(a1['f0'], dtype='S') np.nonzero(a1['f0']) a1.sort() copy.deepcopy(a1) def test_misaligned_scalars_segfault(self): # Ticket #1267 s1 = np.array(('a', 'Foo'), dtype='c,O') s2 = np.array(('b', 'Bar'), dtype='c,O') s1['f1'] = s2['f1'] s1['f1'] = 'Baz' def test_misaligned_dot_product_objects(self): # Ticket #1267 # This didn't require a fix, but it's worth testing anyway, because # it may fail if .dot stops enforcing the arrays to be BEHAVED a = np.array([[(1, 'a'), (0, 'a')], [(0, 'a'), (1, 'a')]], dtype='O,c') b = np.array([[(4, 'a'), (1, 'a')], [(2, 'a'), (2, 'a')]], dtype='O,c') np.dot(a['f0'], b['f0']) def test_byteswap_complex_scalar(self): # Ticket #1259 and gh-441 for dtype in [np.dtype('<'+t) for t in np.typecodes['Complex']]: z = np.array([2.2-1.1j], dtype) x = z[0] # always native-endian y = x.byteswap() if x.dtype.byteorder == z.dtype.byteorder: # little-endian machine assert_equal(x, np.frombuffer(y.tobytes(), dtype=dtype.newbyteorder())) else: # big-endian machine assert_equal(x, np.frombuffer(y.tobytes(), dtype=dtype)) # double check real and imaginary parts: assert_equal(x.real, y.real.byteswap()) assert_equal(x.imag, y.imag.byteswap()) def test_structured_arrays_with_objects1(self): # Ticket #1299 stra = 'aaaa' strb = 'bbbb' x = np.array([[(0, stra), (1, strb)]], 'i8,O') x[x.nonzero()] = x.ravel()[:1] assert_(x[0, 1] == x[0, 0]) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_structured_arrays_with_objects2(self): # Ticket #1299 second test stra = 'aaaa' strb = 'bbbb' numb = sys.getrefcount(strb) numa = sys.getrefcount(stra) x = np.array([[(0, stra), (1, strb)]], 'i8,O') x[x.nonzero()] = x.ravel()[:1] assert_(sys.getrefcount(strb) == numb) assert_(sys.getrefcount(stra) == numa + 2) def test_duplicate_title_and_name(self): # Ticket #1254 dtspec = [(('a', 'a'), 'i'), ('b', 'i')] assert_raises(ValueError, np.dtype, dtspec) def test_signed_integer_division_overflow(self): # Ticket #1317. def test_type(t): min = np.array([np.iinfo(t).min]) min //= -1 with np.errstate(over="ignore"): for t in (np.int8, np.int16, np.int32, np.int64, int): test_type(t) def test_buffer_hashlib(self): from hashlib import sha256 x = np.array([1, 2, 3], dtype=np.dtype('<i4')) assert_equal(sha256(x).hexdigest(), '4636993d3e1da4e9d6b8f87b79e8f7c6d018580d52661950eabc3845c5897a4d') def test_0d_string_scalar(self): # Bug #1436; the following should succeed np.asarray('x', '>c') def test_log1p_compiler_shenanigans(self): # Check if log1p is behaving on 32 bit intel systems. assert_(np.isfinite(np.log1p(np.exp2(-53)))) def test_fromiter_comparison(self): a = np.fromiter(list(range(10)), dtype='b') b = np.fromiter(list(range(10)), dtype='B') assert_(np.all(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))) assert_(np.all(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))) def test_fromstring_crash(self): # Ticket #1345: the following should not cause a crash with assert_warns(DeprecationWarning): np.fromstring(b'aa, aa, 1.0', sep=',') def test_ticket_1539(self): dtypes = [x for x in np.sctypeDict.values() if (issubclass(x, np.number) and not issubclass(x, np.timedelta64))] a = np.array([], np.bool_) # not x[0] because it is unordered failures = [] for x in dtypes: b = a.astype(x) for y in dtypes: c = a.astype(y) try: d = np.dot(b, c) except TypeError: failures.append((x, y)) else: if d != 0: failures.append((x, y)) if failures: raise AssertionError("Failures: %r" % failures) def test_ticket_1538(self): x = np.finfo(np.float32) for name in 'eps epsneg max min resolution tiny'.split(): assert_equal(type(getattr(x, name)), np.float32, err_msg=name) def test_ticket_1434(self): # Check that the out= argument in var and std has an effect data = np.array(((1, 2, 3), (4, 5, 6), (7, 8, 9))) out = np.zeros((3,)) ret = data.var(axis=1, out=out) assert_(ret is out) assert_array_equal(ret, data.var(axis=1)) ret = data.std(axis=1, out=out) assert_(ret is out) assert_array_equal(ret, data.std(axis=1)) def test_complex_nan_maximum(self): cnan = complex(0, np.nan) assert_equal(np.maximum(1, cnan), cnan) def test_subclass_int_tuple_assignment(self): # ticket #1563 class Subclass(np.ndarray): def __new__(cls, i): return np.ones((i,)).view(cls) x = Subclass(5) x[(0,)] = 2 # shouldn't raise an exception assert_equal(x[0], 2) def test_ufunc_no_unnecessary_views(self): # ticket #1548 class Subclass(np.ndarray): pass x = np.array([1, 2, 3]).view(Subclass) y = np.add(x, x, x) assert_equal(id(x), id(y)) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_take_refcount(self): # ticket #939 a = np.arange(16, dtype=float) a.shape = (4, 4) lut = np.ones((5 + 3, 4), float) rgba = np.empty(shape=a.shape + (4,), dtype=lut.dtype) c1 = sys.getrefcount(rgba) try: lut.take(a, axis=0, mode='clip', out=rgba) except TypeError: pass c2 = sys.getrefcount(rgba) assert_equal(c1, c2) def test_fromfile_tofile_seeks(self): # On Python 3, tofile/fromfile used to get (#1610) the Python # file handle out of sync f0 = tempfile.NamedTemporaryFile() f = f0.file f.write(np.arange(255, dtype='u1').tobytes()) f.seek(20) ret = np.fromfile(f, count=4, dtype='u1') assert_equal(ret, np.array([20, 21, 22, 23], dtype='u1')) assert_equal(f.tell(), 24) f.seek(40) np.array([1, 2, 3], dtype='u1').tofile(f) assert_equal(f.tell(), 43) f.seek(40) data = f.read(3) assert_equal(data, b"\x01\x02\x03") f.seek(80) f.read(4) data = np.fromfile(f, dtype='u1', count=4) assert_equal(data, np.array([84, 85, 86, 87], dtype='u1')) f.close() def test_complex_scalar_warning(self): for tp in [np.csingle, np.cdouble, np.clongdouble]: x = tp(1+2j) assert_warns(np.ComplexWarning, float, x) with suppress_warnings() as sup: sup.filter(np.ComplexWarning) assert_equal(float(x), float(x.real)) def test_complex_scalar_complex_cast(self): for tp in [np.csingle, np.cdouble, np.clongdouble]: x = tp(1+2j) assert_equal(complex(x), 1+2j) def test_complex_boolean_cast(self): # Ticket #2218 for tp in [np.csingle, np.cdouble, np.clongdouble]: x = np.array([0, 0+0.5j, 0.5+0j], dtype=tp) assert_equal(x.astype(bool), np.array([0, 1, 1], dtype=bool)) assert_(np.any(x)) assert_(np.all(x[1:])) def test_uint_int_conversion(self): x = 2**64 - 1 assert_equal(int(np.uint64(x)), x) def test_duplicate_field_names_assign(self): ra = np.fromiter(((i*3, i*2) for i in range(10)), dtype='i8,f8') ra.dtype.names = ('f1', 'f2') repr(ra) # should not cause a segmentation fault assert_raises(ValueError, setattr, ra.dtype, 'names', ('f1', 'f1')) def test_eq_string_and_object_array(self): # From e-mail thread "__eq__ with str and object" (Keith Goodman) a1 = np.array(['a', 'b'], dtype=object) a2 = np.array(['a', 'c']) assert_array_equal(a1 == a2, [True, False]) assert_array_equal(a2 == a1, [True, False]) def test_nonzero_byteswap(self): a = np.array([0x80000000, 0x00000080, 0], dtype=np.uint32) a.dtype = np.float32 assert_equal(a.nonzero()[0], [1]) a = a.byteswap().newbyteorder() assert_equal(a.nonzero()[0], [1]) # [0] if nonzero() ignores swap def test_find_common_type_boolean(self): # Ticket #1695 with pytest.warns(DeprecationWarning, match="np.find_common_type"): res = np.find_common_type([], ['?', '?']) assert res == '?' def test_empty_mul(self): a = np.array([1.]) a[1:1] *= 2 assert_equal(a, [1.]) def test_array_side_effect(self): # The second use of itemsize was throwing an exception because in # ctors.c, discover_itemsize was calling PyObject_Length without # checking the return code. This failed to get the length of the # number 2, and the exception hung around until something checked # PyErr_Occurred() and returned an error. assert_equal(np.dtype('S10').itemsize, 10) np.array([['abc', 2], ['long ', '0123456789']], dtype=np.bytes_) assert_equal(np.dtype('S10').itemsize, 10) def test_any_float(self): # all and any for floats a = np.array([0.1, 0.9]) assert_(np.any(a)) assert_(np.all(a)) def test_large_float_sum(self): a = np.arange(10000, dtype='f') assert_equal(a.sum(dtype='d'), a.astype('d').sum()) def test_ufunc_casting_out(self): a = np.array(1.0, dtype=np.float32) b = np.array(1.0, dtype=np.float64) c = np.array(1.0, dtype=np.float32) np.add(a, b, out=c) assert_equal(c, 2.0) def test_array_scalar_contiguous(self): # Array scalars are both C and Fortran contiguous assert_(np.array(1.0).flags.c_contiguous) assert_(np.array(1.0).flags.f_contiguous) assert_(np.array(np.float32(1.0)).flags.c_contiguous) assert_(np.array(np.float32(1.0)).flags.f_contiguous) def test_squeeze_contiguous(self): # Similar to GitHub issue #387 a = np.zeros((1, 2)).squeeze() b = np.zeros((2, 2, 2), order='F')[:, :, ::2].squeeze() assert_(a.flags.c_contiguous) assert_(a.flags.f_contiguous) assert_(b.flags.f_contiguous) def test_squeeze_axis_handling(self): # Issue #10779 # Ensure proper handling of objects # that don't support axis specification # when squeezing class OldSqueeze(np.ndarray): def __new__(cls, input_array): obj = np.asarray(input_array).view(cls) return obj # it is perfectly reasonable that prior # to numpy version 1.7.0 a subclass of ndarray # might have been created that did not expect # squeeze to have an axis argument # NOTE: this example is somewhat artificial; # it is designed to simulate an old API # expectation to guard against regression def squeeze(self): return super().squeeze() oldsqueeze = OldSqueeze(np.array([[1],[2],[3]])) # if no axis argument is specified the old API # expectation should give the correct result assert_equal(np.squeeze(oldsqueeze), np.array([1,2,3])) # likewise, axis=None should work perfectly well # with the old API expectation assert_equal(np.squeeze(oldsqueeze, axis=None), np.array([1,2,3])) # however, specification of any particular axis # should raise a TypeError in the context of the # old API specification, even when using a valid # axis specification like 1 for this array with assert_raises(TypeError): # this would silently succeed for array # subclasses / objects that did not support # squeeze axis argument handling before fixing # Issue #10779 np.squeeze(oldsqueeze, axis=1) # check for the same behavior when using an invalid # axis specification -- in this case axis=0 does not # have size 1, but the priority should be to raise # a TypeError for the axis argument and NOT a # ValueError for squeezing a non-empty dimension with assert_raises(TypeError): np.squeeze(oldsqueeze, axis=0) # the new API knows how to handle the axis # argument and will return a ValueError if # attempting to squeeze an axis that is not # of length 1 with assert_raises(ValueError): np.squeeze(np.array([[1],[2],[3]]), axis=0) def test_reduce_contiguous(self): # GitHub issue #387 a = np.add.reduce(np.zeros((2, 1, 2)), (0, 1)) b = np.add.reduce(np.zeros((2, 1, 2)), 1) assert_(a.flags.c_contiguous) assert_(a.flags.f_contiguous) assert_(b.flags.c_contiguous) @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking") def test_object_array_self_reference(self): # Object arrays with references to themselves can cause problems a = np.array(0, dtype=object) a[()] = a assert_raises(RecursionError, int, a) assert_raises(RecursionError, float, a) a[()] = None @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking") def test_object_array_circular_reference(self): # Test the same for a circular reference. a = np.array(0, dtype=object) b = np.array(0, dtype=object) a[()] = b b[()] = a assert_raises(RecursionError, int, a) # NumPy has no tp_traverse currently, so circular references # cannot be detected. So resolve it: a[()] = None # This was causing a to become like the above a = np.array(0, dtype=object) a[...] += 1 assert_equal(a, 1) def test_object_array_nested(self): # but is fine with a reference to a different array a = np.array(0, dtype=object) b = np.array(0, dtype=object) a[()] = b assert_equal(int(a), int(0)) assert_equal(float(a), float(0)) def test_object_array_self_copy(self): # An object array being copied into itself DECREF'ed before INCREF'ing # causing segmentation faults (gh-3787) a = np.array(object(), dtype=object) np.copyto(a, a) if HAS_REFCOUNT: assert_(sys.getrefcount(a[()]) == 2) a[()].__class__ # will segfault if object was deleted def test_zerosize_accumulate(self): "Ticket #1733" x = np.array([[42, 0]], dtype=np.uint32) assert_equal(np.add.accumulate(x[:-1, 0]), []) def test_objectarray_setfield(self): # Setfield should not overwrite Object fields with non-Object data x = np.array([1, 2, 3], dtype=object) assert_raises(TypeError, x.setfield, 4, np.int32, 0) def test_setting_rank0_string(self): "Ticket #1736" s1 = b"hello1" s2 = b"hello2" a = np.zeros((), dtype="S10") a[()] = s1 assert_equal(a, np.array(s1)) a[()] = np.array(s2) assert_equal(a, np.array(s2)) a = np.zeros((), dtype='f4') a[()] = 3 assert_equal(a, np.array(3)) a[()] = np.array(4) assert_equal(a, np.array(4)) def test_string_astype(self): "Ticket #1748" s1 = b'black' s2 = b'white' s3 = b'other' a = np.array([[s1], [s2], [s3]]) assert_equal(a.dtype, np.dtype('S5')) b = a.astype(np.dtype('S0')) assert_equal(b.dtype, np.dtype('S5')) def test_ticket_1756(self): # Ticket #1756 s = b'0123456789abcdef' a = np.array([s]*5) for i in range(1, 17): a1 = np.array(a, "|S%d" % i) a2 = np.array([s[:i]]*5) assert_equal(a1, a2) def test_fields_strides(self): "gh-2355" r = np.frombuffer(b'abcdefghijklmnop'*4*3, dtype='i4,(2,3)u2') assert_equal(r[0:3:2]['f1'], r['f1'][0:3:2]) assert_equal(r[0:3:2]['f1'][0], r[0:3:2][0]['f1']) assert_equal(r[0:3:2]['f1'][0][()], r[0:3:2][0]['f1'][()]) assert_equal(r[0:3:2]['f1'][0].strides, r[0:3:2][0]['f1'].strides) def test_alignment_update(self): # Check that alignment flag is updated on stride setting a = np.arange(10) assert_(a.flags.aligned) a.strides = 3 assert_(not a.flags.aligned) def test_ticket_1770(self): "Should not segfault on python 3k" import numpy as np try: a = np.zeros((1,), dtype=[('f1', 'f')]) a['f1'] = 1 a['f2'] = 1 except ValueError: pass except Exception: raise AssertionError def test_ticket_1608(self): "x.flat shouldn't modify data" x = np.array([[1, 2], [3, 4]]).T np.array(x.flat) assert_equal(x, [[1, 3], [2, 4]]) def test_pickle_string_overwrite(self): import re data = np.array([1], dtype='b') blob = pickle.dumps(data, protocol=1) data = pickle.loads(blob) # Check that loads does not clobber interned strings s = re.sub("a(.)", "\x01\\1", "a_") assert_equal(s[0], "\x01") data[0] = 0x6a s = re.sub("a(.)", "\x01\\1", "a_") assert_equal(s[0], "\x01") def test_pickle_bytes_overwrite(self): for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): data = np.array([1], dtype='b') data = pickle.loads(pickle.dumps(data, protocol=proto)) data[0] = 0x7d bytestring = "\x01 ".encode('ascii') assert_equal(bytestring[0:1], '\x01'.encode('ascii')) def test_pickle_py2_array_latin1_hack(self): # Check that unpickling hacks in Py3 that support # encoding='latin1' work correctly. # Python2 output for pickle.dumps(numpy.array([129], dtype='b')) data = (b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\n" b"tp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'i1'\np8\n" b"I0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nNNNI-1\nI-1\nI0\ntp12\nbI00\nS'\\x81'\n" b"p13\ntp14\nb.") # This should work: result = pickle.loads(data, encoding='latin1') assert_array_equal(result, np.array([129]).astype('b')) # Should not segfault: assert_raises(Exception, pickle.loads, data, encoding='koi8-r') def test_pickle_py2_scalar_latin1_hack(self): # Check that scalar unpickling hack in Py3 that supports # encoding='latin1' work correctly. # Python2 output for pickle.dumps(...) datas = [ # (original, python2_pickle, koi8r_validity) (np.str_('\u6bd2'), (b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n" b"(S'U1'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI4\nI4\nI0\n" b"tp6\nbS'\\xd2k\\x00\\x00'\np7\ntp8\nRp9\n."), 'invalid'), (np.float64(9e123), (b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n(S'f8'\n" b"p2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI-1\nI-1\nI0\ntp6\n" b"bS'O\\x81\\xb7Z\\xaa:\\xabY'\np7\ntp8\nRp9\n."), 'invalid'), (np.bytes_(b'\x9c'), # different 8-bit code point in KOI8-R vs latin1 (b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n(S'S1'\np2\n" b"I0\nI1\ntp3\nRp4\n(I3\nS'|'\np5\nNNNI1\nI1\nI0\ntp6\nbS'\\x9c'\np7\n" b"tp8\nRp9\n."), 'different'), ] for original, data, koi8r_validity in datas: result = pickle.loads(data, encoding='latin1') assert_equal(result, original) # Decoding under non-latin1 encoding (e.g.) KOI8-R can # produce bad results, but should not segfault. if koi8r_validity == 'different': # Unicode code points happen to lie within latin1, # but are different in koi8-r, resulting to silent # bogus results result = pickle.loads(data, encoding='koi8-r') assert_(result != original) elif koi8r_validity == 'invalid': # Unicode code points outside latin1, so results # to an encoding exception assert_raises(ValueError, pickle.loads, data, encoding='koi8-r') else: raise ValueError(koi8r_validity) def test_structured_type_to_object(self): a_rec = np.array([(0, 1), (3, 2)], dtype='i4,i8') a_obj = np.empty((2,), dtype=object) a_obj[0] = (0, 1) a_obj[1] = (3, 2) # astype records -> object assert_equal(a_rec.astype(object), a_obj) # '=' records -> object b = np.empty_like(a_obj) b[...] = a_rec assert_equal(b, a_obj) # '=' object -> records b = np.empty_like(a_rec) b[...] = a_obj assert_equal(b, a_rec) def test_assign_obj_listoflists(self): # Ticket # 1870 # The inner list should get assigned to the object elements a = np.zeros(4, dtype=object) b = a.copy() a[0] = [1] a[1] = [2] a[2] = [3] a[3] = [4] b[...] = [[1], [2], [3], [4]] assert_equal(a, b) # The first dimension should get broadcast a = np.zeros((2, 2), dtype=object) a[...] = [[1, 2]] assert_equal(a, [[1, 2], [1, 2]]) @pytest.mark.slow_pypy def test_memoryleak(self): # Ticket #1917 - ensure that array data doesn't leak for i in range(1000): # 100MB times 1000 would give 100GB of memory usage if it leaks a = np.empty((100000000,), dtype='i1') del a @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_ufunc_reduce_memoryleak(self): a = np.arange(6) acnt = sys.getrefcount(a) np.add.reduce(a) assert_equal(sys.getrefcount(a), acnt) def test_search_sorted_invalid_arguments(self): # Ticket #2021, should not segfault. x = np.arange(0, 4, dtype='datetime64[D]') assert_raises(TypeError, x.searchsorted, 1) def test_string_truncation(self): # Ticket #1990 - Data can be truncated in creation of an array from a # mixed sequence of numeric values and strings (gh-2583) for val in [True, 1234, 123.4, complex(1, 234)]: for tostr, dtype in [(asunicode, "U"), (asbytes, "S")]: b = np.array([val, tostr('xx')], dtype=dtype) assert_equal(tostr(b[0]), tostr(val)) b = np.array([tostr('xx'), val], dtype=dtype) assert_equal(tostr(b[1]), tostr(val)) # test also with longer strings b = np.array([val, tostr('xxxxxxxxxx')], dtype=dtype) assert_equal(tostr(b[0]), tostr(val)) b = np.array([tostr('xxxxxxxxxx'), val], dtype=dtype) assert_equal(tostr(b[1]), tostr(val)) def test_string_truncation_ucs2(self): # Ticket #2081. Python compiled with two byte unicode # can lead to truncation if itemsize is not properly # adjusted for NumPy's four byte unicode. a = np.array(['abcd']) assert_equal(a.dtype.itemsize, 16) def test_unique_stable(self): # Ticket #2063 must always choose stable sort for argsort to # get consistent results v = np.array(([0]*5 + [1]*6 + [2]*6)*4) res = np.unique(v, return_index=True) tgt = (np.array([0, 1, 2]), np.array([ 0, 5, 11])) assert_equal(res, tgt) def test_unicode_alloc_dealloc_match(self): # Ticket #1578, the mismatch only showed up when running # python-debug for python versions >= 2.7, and then as # a core dump and error message. a = np.array(['abc'], dtype=np.str_)[0] del a def test_refcount_error_in_clip(self): # Ticket #1588 a = np.zeros((2,), dtype='>i2').clip(min=0) x = a + a # This used to segfault: y = str(x) # Check the final string: assert_(y == "[0 0]") def test_searchsorted_wrong_dtype(self): # Ticket #2189, it used to segfault, so we check that it raises the # proper exception. a = np.array([('a', 1)], dtype='S1, int') assert_raises(TypeError, np.searchsorted, a, 1.2) # Ticket #2066, similar problem: dtype = np.format_parser(['i4', 'i4'], [], []) a = np.recarray((2,), dtype) a[...] = [(1, 2), (3, 4)] assert_raises(TypeError, np.searchsorted, a, 1) def test_complex64_alignment(self): # Issue gh-2668 (trac 2076), segfault on sparc due to misalignment dtt = np.complex64 arr = np.arange(10, dtype=dtt) # 2D array arr2 = np.reshape(arr, (2, 5)) # Fortran write followed by (C or F) read caused bus error data_str = arr2.tobytes('F') data_back = np.ndarray(arr2.shape, arr2.dtype, buffer=data_str, order='F') assert_array_equal(arr2, data_back) def test_structured_count_nonzero(self): arr = np.array([0, 1]).astype('i4, (2)i4')[:1] count = np.count_nonzero(arr) assert_equal(count, 0) def test_copymodule_preserves_f_contiguity(self): a = np.empty((2, 2), order='F') b = copy.copy(a) c = copy.deepcopy(a) assert_(b.flags.fortran) assert_(b.flags.f_contiguous) assert_(c.flags.fortran) assert_(c.flags.f_contiguous) def test_fortran_order_buffer(self): import numpy as np a = np.array([['Hello', 'Foob']], dtype='U5', order='F') arr = np.ndarray(shape=[1, 2, 5], dtype='U1', buffer=a) arr2 = np.array([[['H', 'e', 'l', 'l', 'o'], ['F', 'o', 'o', 'b', '']]]) assert_array_equal(arr, arr2) def test_assign_from_sequence_error(self): # Ticket #4024. arr = np.array([1, 2, 3]) assert_raises(ValueError, arr.__setitem__, slice(None), [9, 9]) arr.__setitem__(slice(None), [9]) assert_equal(arr, [9, 9, 9]) def test_format_on_flex_array_element(self): # Ticket #4369. dt = np.dtype([('date', '<M8[D]'), ('val', '<f8')]) arr = np.array([('2000-01-01', 1)], dt) formatted = '{0}'.format(arr[0]) assert_equal(formatted, str(arr[0])) def test_deepcopy_on_0d_array(self): # Ticket #3311. arr = np.array(3) arr_cp = copy.deepcopy(arr) assert_equal(arr, arr_cp) assert_equal(arr.shape, arr_cp.shape) assert_equal(int(arr), int(arr_cp)) assert_(arr is not arr_cp) assert_(isinstance(arr_cp, type(arr))) def test_deepcopy_F_order_object_array(self): # Ticket #6456. a = {'a': 1} b = {'b': 2} arr = np.array([[a, b], [a, b]], order='F') arr_cp = copy.deepcopy(arr) assert_equal(arr, arr_cp) assert_(arr is not arr_cp) # Ensure that we have actually copied the item. assert_(arr[0, 1] is not arr_cp[1, 1]) # Ensure we are allowed to have references to the same object. assert_(arr[0, 1] is arr[1, 1]) # Check the references hold for the copied objects. assert_(arr_cp[0, 1] is arr_cp[1, 1]) def test_deepcopy_empty_object_array(self): # Ticket #8536. # Deepcopy should succeed a = np.array([], dtype=object) b = copy.deepcopy(a) assert_(a.shape == b.shape) def test_bool_subscript_crash(self): # gh-4494 c = np.rec.array([(1, 2, 3), (4, 5, 6)]) masked = c[np.array([True, False])] base = masked.base del masked, c base.dtype def test_richcompare_crash(self): # gh-4613 import operator as op # dummy class where __array__ throws exception class Foo: __array_priority__ = 1002 def __array__(self, *args, **kwargs): raise Exception() rhs = Foo() lhs = np.array(1) for f in [op.lt, op.le, op.gt, op.ge]: assert_raises(TypeError, f, lhs, rhs) assert_(not op.eq(lhs, rhs)) assert_(op.ne(lhs, rhs)) def test_richcompare_scalar_and_subclass(self): # gh-4709 class Foo(np.ndarray): def __eq__(self, other): return "OK" x = np.array([1, 2, 3]).view(Foo) assert_equal(10 == x, "OK") assert_equal(np.int32(10) == x, "OK") assert_equal(np.array([10]) == x, "OK") def test_pickle_empty_string(self): # gh-3926 for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): test_string = np.bytes_('') assert_equal(pickle.loads( pickle.dumps(test_string, protocol=proto)), test_string) def test_frompyfunc_many_args(self): # gh-5672 def passer(*args): pass assert_raises(ValueError, np.frompyfunc, passer, 32, 1) def test_repeat_broadcasting(self): # gh-5743 a = np.arange(60).reshape(3, 4, 5) for axis in chain(range(-a.ndim, a.ndim), [None]): assert_equal(a.repeat(2, axis=axis), a.repeat([2], axis=axis)) def test_frompyfunc_nout_0(self): # gh-2014 def f(x): x[0], x[-1] = x[-1], x[0] uf = np.frompyfunc(f, 1, 0) a = np.array([[1, 2, 3], [4, 5], [6, 7, 8, 9]], dtype=object) assert_equal(uf(a), ()) expected = np.array([[3, 2, 1], [5, 4], [9, 7, 8, 6]], dtype=object) assert_array_equal(a, expected) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_leak_in_structured_dtype_comparison(self): # gh-6250 recordtype = np.dtype([('a', np.float64), ('b', np.int32), ('d', (str, 5))]) # Simple case a = np.zeros(2, dtype=recordtype) for i in range(100): a == a assert_(sys.getrefcount(a) < 10) # The case in the bug report. before = sys.getrefcount(a) u, v = a[0], a[1] u == v del u, v gc.collect() after = sys.getrefcount(a) assert_equal(before, after) def test_empty_percentile(self): # gh-6530 / gh-6553 assert_array_equal(np.percentile(np.arange(10), []), np.array([])) def test_void_compare_segfault(self): # gh-6922. The following should not segfault a = np.ones(3, dtype=[('object', 'O'), ('int', '<i2')]) a.sort() def test_reshape_size_overflow(self): # gh-7455 a = np.ones(20)[::2] if np.dtype(np.intp).itemsize == 8: # 64 bit. The following are the prime factors of 2**63 + 5, # plus a leading 2, so when multiplied together as int64, # the result overflows to a total size of 10. new_shape = (2, 13, 419, 691, 823, 2977518503) else: # 32 bit. The following are the prime factors of 2**31 + 5, # plus a leading 2, so when multiplied together as int32, # the result overflows to a total size of 10. new_shape = (2, 7, 7, 43826197) assert_raises(ValueError, a.reshape, new_shape) @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), reason="PyPy bug in error formatting") def test_invalid_structured_dtypes(self): # gh-2865 # mapping python objects to other dtypes assert_raises(ValueError, np.dtype, ('O', [('name', 'i8')])) assert_raises(ValueError, np.dtype, ('i8', [('name', 'O')])) assert_raises(ValueError, np.dtype, ('i8', [('name', [('name', 'O')])])) assert_raises(ValueError, np.dtype, ([('a', 'i4'), ('b', 'i4')], 'O')) assert_raises(ValueError, np.dtype, ('i8', 'O')) # wrong number/type of tuple elements in dict assert_raises(ValueError, np.dtype, ('i', {'name': ('i', 0, 'title', 'oops')})) assert_raises(ValueError, np.dtype, ('i', {'name': ('i', 'wrongtype', 'title')})) # disallowed as of 1.13 assert_raises(ValueError, np.dtype, ([('a', 'O'), ('b', 'O')], [('c', 'O'), ('d', 'O')])) # allowed as a special case due to existing use, see gh-2798 a = np.ones(1, dtype=('O', [('name', 'O')])) assert_equal(a[0], 1) # In particular, the above union dtype (and union dtypes in general) # should mainly behave like the main (object) dtype: assert a[0] is a.item() assert type(a[0]) is int def test_correct_hash_dict(self): # gh-8887 - __hash__ would be None despite tp_hash being set all_types = set(np.sctypeDict.values()) - {np.void} for t in all_types: val = t() try: hash(val) except TypeError as e: assert_equal(t.__hash__, None) else: assert_(t.__hash__ != None) def test_scalar_copy(self): scalar_types = set(np.sctypeDict.values()) values = { np.void: b"a", np.bytes_: b"a", np.str_: "a", np.datetime64: "2017-08-25", } for sctype in scalar_types: item = sctype(values.get(sctype, 1)) item2 = copy.copy(item) assert_equal(item, item2) def test_void_item_memview(self): va = np.zeros(10, 'V4') x = va[:1].item() va[0] = b'\xff\xff\xff\xff' del va assert_equal(x, b'\x00\x00\x00\x00') def test_void_getitem(self): # Test fix for gh-11668. assert_(np.array([b'a'], 'V1').astype('O') == b'a') assert_(np.array([b'ab'], 'V2').astype('O') == b'ab') assert_(np.array([b'abc'], 'V3').astype('O') == b'abc') assert_(np.array([b'abcd'], 'V4').astype('O') == b'abcd') def test_structarray_title(self): # The following used to segfault on pypy, due to NPY_TITLE_KEY # not working properly and resulting to double-decref of the # structured array field items: # See: https://bitbucket.org/pypy/pypy/issues/2789 for j in range(5): structure = np.array([1], dtype=[(('x', 'X'), np.object_)]) structure[0]['x'] = np.array([2]) gc.collect() def test_dtype_scalar_squeeze(self): # gh-11384 values = { 'S': b"a", 'M': "2018-06-20", } for ch in np.typecodes['All']: if ch in 'O': continue sctype = np.dtype(ch).type scvalue = sctype(values.get(ch, 3)) for axis in [None, ()]: squeezed = scvalue.squeeze(axis=axis) assert_equal(squeezed, scvalue) assert_equal(type(squeezed), type(scvalue)) def test_field_access_by_title(self): # gh-11507 s = 'Some long field name' if HAS_REFCOUNT: base = sys.getrefcount(s) t = np.dtype([((s, 'f1'), np.float64)]) data = np.zeros(10, t) for i in range(10): str(data[['f1']]) if HAS_REFCOUNT: assert_(base <= sys.getrefcount(s)) @pytest.mark.parametrize('val', [ # arrays and scalars np.ones((10, 10), dtype='int32'), np.uint64(10), ]) @pytest.mark.parametrize('protocol', range(2, pickle.HIGHEST_PROTOCOL + 1) ) def test_pickle_module(self, protocol, val): # gh-12837 s = pickle.dumps(val, protocol) assert b'_multiarray_umath' not in s if protocol == 5 and len(val.shape) > 0: # unpickling ndarray goes through _frombuffer for protocol 5 assert b'numpy.core.numeric' in s else: assert b'numpy.core.multiarray' in s def test_object_casting_errors(self): # gh-11993 update to ValueError (see gh-16909), since strings can in # principle be converted to complex, but this string cannot. arr = np.array(['AAAAA', 18465886.0, 18465886.0], dtype=object) assert_raises(ValueError, arr.astype, 'c8') def test_eff1d_casting(self): # gh-12711 x = np.array([1, 2, 4, 7, 0], dtype=np.int16) res = np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99])) assert_equal(res, [-99, 1, 2, 3, -7, 88, 99]) # The use of safe casting means, that 1<<20 is cast unsafely, an # error may be better, but currently there is no mechanism for it. res = np.ediff1d(x, to_begin=(1<<20), to_end=(1<<20)) assert_equal(res, [0, 1, 2, 3, -7, 0]) def test_pickle_datetime64_array(self): # gh-12745 (would fail with pickle5 installed) d = np.datetime64('2015-07-04 12:59:59.50', 'ns') arr = np.array([d]) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): dumped = pickle.dumps(arr, protocol=proto) assert_equal(pickle.loads(dumped), arr) def test_bad_array_interface(self): class T: __array_interface__ = {} with assert_raises(ValueError): np.array([T()]) def test_2d__array__shape(self): class T: def __array__(self): return np.ndarray(shape=(0,0)) # Make sure __array__ is used instead of Sequence methods. def __iter__(self): return iter([]) def __getitem__(self, idx): raise AssertionError("__getitem__ was called") def __len__(self): return 0 t = T() # gh-13659, would raise in broadcasting [x=t for x in result] arr = np.array([t]) assert arr.shape == (1, 0, 0) @pytest.mark.skipif(sys.maxsize < 2 ** 31 + 1, reason='overflows 32-bit python') def test_to_ctypes(self): #gh-14214 arr = np.zeros((2 ** 31 + 1,), 'b') assert arr.size * arr.itemsize > 2 ** 31 c_arr = np.ctypeslib.as_ctypes(arr) assert_equal(c_arr._length_, arr.size) def test_complex_conversion_error(self): # gh-17068 with pytest.raises(TypeError, match=r"Unable to convert dtype.*"): complex(np.array("now", np.datetime64)) def test__array_interface__descr(self): # gh-17068 dt = np.dtype(dict(names=['a', 'b'], offsets=[0, 0], formats=[np.int64, np.int64])) descr = np.array((1, 1), dtype=dt).__array_interface__['descr'] assert descr == [('', '|V8')] # instead of [(b'', '|V8')] @pytest.mark.skipif(sys.maxsize < 2 ** 31 + 1, reason='overflows 32-bit python') @requires_memory(free_bytes=9e9) def test_dot_big_stride(self): # gh-17111 # blas stride = stride//itemsize > int32 max int32_max = np.iinfo(np.int32).max n = int32_max + 3 a = np.empty([n], dtype=np.float32) b = a[::n-1] b[...] = 1 assert b.strides[0] > int32_max * b.dtype.itemsize assert np.dot(b, b) == 2.0 def test_frompyfunc_name(self): # name conversion was failing for python 3 strings # resulting in the default '?' name. Also test utf-8 # encoding using non-ascii name. def cassé(x): return x f = np.frompyfunc(cassé, 1, 1) assert str(f) == "<ufunc 'cassé (vectorized)'>" @pytest.mark.parametrize("operation", [ 'add', 'subtract', 'multiply', 'floor_divide', 'conjugate', 'fmod', 'square', 'reciprocal', 'power', 'absolute', 'negative', 'positive', 'greater', 'greater_equal', 'less', 'less_equal', 'equal', 'not_equal', 'logical_and', 'logical_not', 'logical_or', 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'invert', 'left_shift', 'right_shift', 'gcd', 'lcm' ] ) @pytest.mark.parametrize("order", [ ('b->', 'B->'), ('h->', 'H->'), ('i->', 'I->'), ('l->', 'L->'), ('q->', 'Q->'), ] ) def test_ufunc_order(self, operation, order): # gh-18075 # Ensure signed types before unsigned def get_idx(string, str_lst): for i, s in enumerate(str_lst): if string in s: return i raise ValueError(f"{string} not in list") types = getattr(np, operation).types assert get_idx(order[0], types) < get_idx(order[1], types), ( f"Unexpected types order of ufunc in {operation}" f"for {order}. Possible fix: Use signed before unsigned" "in generate_umath.py") def test_nonbool_logical(self): # gh-22845 # create two arrays with bit patterns that do not overlap. # needs to be large enough to test both SIMD and scalar paths size = 100 a = np.frombuffer(b'\x01' * size, dtype=np.bool_) b = np.frombuffer(b'\x80' * size, dtype=np.bool_) expected = np.ones(size, dtype=np.bool_) assert_array_equal(np.logical_and(a, b), expected)
© 2024 UnknownSec